Assembly Planning for Robots

Team 5
Kim Jaemin

Jung Geumyoung

KAIST

Recap : Multi-agent path finding

Finding collision free paths for each multi-agents in the sharing environment

given

(] graph - ‘ Key considerations :
@ agents (starts) R . 9 - conflict
M goals

- objective functions
obtain - extensions

1. paths without collisions u)
= N Approaches:
- b \
] ‘ ’ - learning-based
e - search-based
all agents are on their goals simultaneously - optimization-based

computationally DIFFICULT to obtain optimal solutions
KAIST

Contents

e Problem definition & Motivation
e Challenges
e Case study: ASAP

e Summary & Quiz

KAIST

Introduction

Robotic Assembly : Robot task to manipulate and join constituent parts

into a predetermined final product or sub-assembly

Robot assembles IKEA chair frame

[1] Suarez-Ruiz et al., Can robots assemble an IKEA chair? Science Robotics, 2018
KAIST [2] Lee et al., IKEA Furniture Assembly Environment. ICRA, 2021

Problem Definition

Given: A set of 3D parts and Goal: A real-world feasible,
final assembled state sequentially valid assembly plan

©,

\)
\ -\ e ‘ . 3 ‘ ﬂ |
? ® E— O.‘ - ® ot
d -]
0 “® =
) ‘ .
L) e e

KAIST

Motivation

In manufacturing industry, the assembly process is usually planned by humans
with hardcoded instructions.

select_part(A)
move_up(10cm)
move_right(20cm)

Labor-intensive Slow Tedious Error-prone Inflexible

KAIST

Challenges

1. Part motion planning

Geometric path-planning doesn’t generalize well on complex assembly, because

e Large search space (6 DoF 3D poses)
e Highly constrained

&

e Arbitrary shape
e “Narrow passage” problem
e Hard to deal with rotational motion

KAIST

Challenges

2. Physical feasibility

e Assembly is conducted under physical constraints (gravity)
e Must consider physical stability of parts for robotic execution

assembly feasible?

KAIST

Challenges

3. Sequence planning under constraints

e Number of possible assembly sequences grow factorially
e Due to precedence constraints, only few of them are actually valid

- &
X T j O(N!) search space

Assembly Path Planning
KAIST

Presents : ASAP

Automated Sequence Planning for Complex
Robotic Assembly with Physical Feasibility

Input & output

or N
- .,

Object
Meshes

Assembled
Poses

Robot Specifications
(Optional)

KAIST

mp ASAP mmp

@ D

ssembly Sequences
Assembly Paths

Intermediate Poses

Parts to be Held

Grasps & Robot Motion

\ (optional) /

Complete Assembly Plans

Tian et al., ASAP: Automated Sequence Planning for Complex Robotic Assembly with Physical Feasibility. ICRA, 2024

ASAP | Assembly by Disassembly

Assembly of n parts — O(n!) search space

Assume rigid bodies, then
e Assembly = reversed disassembly
e Disassembly of n parts — 0(n?) search space (efficient!)

Assembly by disassembly o,

-’
1 -
* .
= =
‘ .
T - - Disassembly Planning " 3
- ey S
X
. 1 / = =

KAIST

ASAP | Key Components

What is a viable
How can | take part P Is G stable sequence to

ity?
out of G? under gravity disassemble G?

Motion direction A_/i <) / \\
O £ /ﬂKs 1
. — . >]
g I I
Force direction f' I f i
Part motion planning Stability check Disassembly tree search

KAIST

ASAP | Key Components

Is G stable

How can | take part '
under gravity?

P out of G?

Motion direction M =
e ~
R
L — L

. . =
Force direction F

Part motion planning Stability check

KAIST

What is a viable
sequence to
disassemble G?

g
ﬁc/ng?z
& £

Disassembly tree search

Part Motion Planning

How can | take part
A out of G?

Q. "How can | take part P out of assembly G"?

Apply actions (forces / torques) in physics-based simulation N
Check for updated part poses {) ~

Use a tree search (BFS) to find the action sequence

4 ,
Motion direction M 4
\\‘ ’ 5 € NI LT &
. — - - — S i
Force direction ? +Y
v
-Z
Physics-based simulation + Tree search (BFS)
Applying force to disassemble Finding correct force sequence

KAIST Tian et al., ASAP: Automated Sequence Planning for Complex Robotic Assembly with Physical Feasibility. ICRA, 2024

Part Motion Planning

A out of G?

Q. "How can | take part P out of assembly G"? Qm.mkem |
|

12 discrete actions (axis-aligned F & T)

KAIST Tian et al., ASAP: Automated Sequence Planning for Complex Robotic Assembly with Physical Feasibility. ICRA, 2024

Part Motion Planning

How can | take part
A out of G?

Q. "How can | take part P out of assembly G"?

12 discrete actions (axis-aligned F & T) N

KAIST Tian et al., ASAP: Automated Sequence Planning for Complex Robotic Assembly with Physical Feasibility. ICRA, 2024

ASAP | Key Components

Is G stable

How can | take part P '
under gravity?

out of G?

Motion direction M =
e ~
R
L — L

. . =
Force direction F

Part motion planning Stability check

KAIST

What is a viable
sequence to
disassemble G?

g
ﬁc/ng?z
& £

Disassembly tree search

Stability Check

Q. “Is G at pose s stable under gravity?”

Two-part problem:

1. Finding candidate poses
2. Performing the stability check for a given pose

KAIST

Is G stable
under gravity?

Stability check

Stability Check

Q. “Is G at pose s stable under gravity?” ‘ Jogsitle
1. Finding candidate poses L=
o o . . ‘ /] .)yﬁ /. gI
Quasistatic pose estimator gives a few ‘good’ candidate poses f‘*
e Assumes slow, gentle placements Stabilty check

e Poses determined by geometry & mass distribution alone

M' wb

prob = 32.6% prob = 32.6% prob =19.8% prob = 5.1% prob = 3.7%

KAIST

Stability Check

Q. “Is G at pose s stable under gravity?”

2. Stability check for a given pose

Algorithm 2: Physics-Based Stability Check

Physics-based simulation Input: Assembly G = {p1, p2, ..., pn} With pose s, max

M parts to be held, max simulation steps N, stable
moving distance threshold d,.
Output: Parts to be held to make G stable with pose s.
1 Py« {};
2 while |P;| < M do

Check if any parts fall after certain
time steps 3

Evaluate stability conditioned on g 3 | ResetSimulation(G, s, Py); N
4 foriinl,...,n do q;, < GetPosition(p;);

the pose and parts to hold ¥ | wtobled tme:
6 for jinl,.... Ndo // N-step stability check
7 Simulate(At); // run physics simulation
8 for . in 1,...,n do

Part-holding strategy 9 q;, < GetPosition(p);
10 if ||qij —q,, || > din or IsDisconnected(p;, G)

Identify which parts are to be held then

: . 11 stable < false; // p; falls

(by grippers/fixtures) 12 ‘l P, « P,U{p:}; // hold p;

13 | break;
- 7 14 3 3 .

How to hold N parts by M fixtures? 15 ITI stable then return P;; // stable for N stepsl

16 return null; // unstable

KAIST

ASAP | Key Components

Is G stable

How can | take part P :
under gravity?

out of G?

Motion direction M
e ~
R
. — L

. . =
Force direction F

Part motion planning Stability check

KAIST

What is a viable
sequence to
disassemble G?

4
2
& £
/N —
I 3 — INFEASIBLE
Disassembly tree search

Disassembly Tree Search

Q. “What is a viable sequence to disassemble G?”

Top: assembled

2 = |[NFEASIBLE

é/ \[w FEASIBLE
L

Bottom: disassembled
KAIST Tian et al., ASAP: Automated Sequence Planning for Complex Robotic Assembly with Physical Feasibility. ICRA, 2024

Disassembly Tree Search

Q. “What is a viable sequence to disassemble G?”

def asap():] .
tree.add_node(root_node) Quasistatic Pose

Node selection .
for node in|select_node(tree) ; Estimator
: _Part selection
for part in|select_part(node}:

for pose in|select_pose(node); Pose selection
check_assemblable(node, part, pose)
check_stable(node, part, pose)

if success:
child_node = node \ {part}
tree.add_edge(node, child_node) prob =326% prob=326% prob=19.8% prob = 5.1% prob = 3.7%

return tree

KAIST Tian et al., ASAP: Automated Sequence Planning for Complex Robotic Assembly with Physical Feasibility. ICRA, 2024

Disassembly Tree Search

Q. “What is a viable sequence to disassemble G?”

def asap(): Part motion planning
tree.add_node(root_node) Node selection , ,
for node in|select_node(tree) U /\MW"M“’"M ;
for part in|select_part(node}: Al Ffe Be 1(:n { > . J
ose selection Mo

for pose in|select_pose(node)]

check_assemblable(node, part, pose)

check_stable(node, part, pose)

if success: Feasibility evaluation
child_node = node \ {part}
tree.add_edge(node, child_node)

return tree

KAIST Tian et al., ASAP: Automated Sequence Planning for Complex Robotic Assembly with Physical Feasibility. ICRA, 2024

Disassembly Tree Search

Q. “What is a viable sequence to disassemble G?”

Top: assembled

ﬂ def asap()
/ tree. add _node(root_node) _ node selection
for node infselect_node(tree) Part selection

ﬂ ﬂ for part in|select_part(node}): .
for pose in|select_pose(node); Pose selection
' | I check_assemblable(node, part, pose)
' j check_stable(node, part, pose)
ﬂ £ j if success: Feasibility evaluation
child_node = node \ {part}
c’/ \t N— tree.add_edge(node, child_node)
return tree
L & —— INFEASIBLE

Bottom: disassembled
KAIST Tian et al., ASAP: Automated Sequence Planning for Complex Robotic Assembly with Physical Feasibility. ICRA, 2024

Summary

Walkthrough on robotic assembly planning pipeline

1. Part motion planning :
2. Physical stability check :

3. Assembly sequence planning :

KAIST

Discrete action sampling
Physics-based simulation

Disassembly tree search

Thank you

KAIST

Quiz

1. In ASAP, which of the following is used for assembly sequence planning?
a. RRT
b. Disassembly tree search

c. A* algorithm

2. The main motivation behind ‘assembly by disassembly’ is to reduce the
search space. (T / F)

KAIST

Part Pose Statistics: Estimators and Experiments

Represents : ‘randomly dropped’ Part Pose Estimator
Estimate the probability of each face making contact with the ground

Intuition :
The most stable pose of the part is the one
in which the part is most likely to land when dropped

Method :
The larger the spherical surface area projected
through each face from the component's center of

Fig. 3. Computing initial probabilities for each face.

TABLE III
mass, the more stable the component is. ARSI B SIRey RUBISOND.
Quasi- | P'turbed {Dynamic Physical
Po_sc & Sla_tic Q-S Sim. Tests®
1] 362 | 473 54.1 56.0
2 | 160 | 255 24.1 24.5
3 | 174 17.0 14.0 13.6
4 J 8.1 12 1.4 44
‘ 5 1 106 45 53 1.4
Photographs of the rectangular black stereo button in its seven stable states. 75 44 1.0 03
7 43 0.0 03 0.0
KAIST eor | 140 | 58 4 | -

Physics-based Simulation (SDF)

Bullet [Coumans and Bai 2021]
Convex decomposition

Rigid body dynamics from RedMax [Xu et al. 2021]
[Wang et al. 2019]

Signed distance field (SDF) for object representation

Accurate and efficient contact-rich simulation

(also differentiable and open-source) Factory [Narang et al. 2022]
(Concurrent)

KAIST

Part Pose Statistics: Estimators and Experiments

Represents : ‘randomly dropped’ Part Pose Estimator
Estimate the probability of each face making contact with the ground

intuition :
The most stable pose of the part is the pose
that is most likely to land when dropped

e.g. thrown vans always land upside (most stable pose)

T
o

© Vans Will Always Land Face

KAIST

method :

estimate the probability of the landing with specific
face of part by projecting the convex hull into

unit sphere, calculate the projected area

probability A: that the part
will land on face F;
under quasi-static conditions.

Bo+pr+P2—7
A,‘ -
47
A; Projected area (solid angle) of face F; on the unit sphere

Bo, B1, 3. spherical interior angles of the projected triangle

Disassembly Tree Search

I'{} . . . n Wh t. i bl
Q. “What is a viable sequence to disassemble G? L et 1
‘ disassemble G?
def asap(): . . N . .
tree.add_'node(root_node) il calastian ‘ . . ‘ ﬂ \/
for node in|select_node(tree) PN
for part in select_part(node): @ ® . . . 000 ¢ /f!\t !
for pose in select_pose(node): Depth-First Search £ & g %
check_assemblable(node, part, pose) L: N
check_stable(node, part, pose) Finding a feasible method fast
if success: n

tree.add_edge(node, child_node)
return tree

child_node = node \ {part} / \\
| S R

FEASIBLE

I 2 =~ INFEASIBLE

KAIST Tian et al., ASAP: Automated Sequence Planning for Complex Robotic Assembly with Physical Feasibility. ICRA, 2024

Disassembly Tree Search

What is a viable

Q. "What is a viable sequence to disassemble G?” sequence to

disassemble G?

def asap():

tree.add_node(root_node) Geometric Heuristic

: eTbElen Tatree) Node selection F
or node injsetect_node(tree .] c
5 _Part selection P i

for part in|select_part(node .. . 5. ¥
o a4 (_ insight : exterior parts are AU
for pose in select_pose(node):)) £ &
generally easier to disassemble £ ==

check_assemblable(node, part, pose) _
check_stable(node, part, pose) due to fewer precedence constraint

if success:
child_node = node \ {pa'rt} method : calculate distance between
tree.add_edge(node, child_node) rt
part’'s center of mass and assembly center

return tree

Parts farther from the assembly center are prioritized for disassembly

KAIST Tian et al., ASAP: Automated Sequence Planning for Complex Robotic Assembly with Physical Feasibility. ICRA, 2024

