Assembly Planning for Robots

Team 5 Kim Jaemin Jung Geumyoung

Recap : Multi-agent path finding

Finding collision free paths for each multi-agents in the sharing environment

given

🗌 graph

agents (starts)
 goals

obtain

1. paths without collisions

sions

s.t.

all agents are on their goals simultaneously

computationally **DIFFICULT** to obtain optimal solutions

Key considerations :

- conflict
- objective functions
- extensions

Approaches :

- learning-based
- search-based
- optimization-based

Contents

- Problem definition & Motivation
- Challenges
- Case study: ASAP
- Summary & Quiz

Introduction

Robotic Assembly : Robot task to manipulate and join constituent parts

into a predetermined final product or sub-assembly

Robot assembles IKEA chair frame

[1] Suárez-Ruiz et al., Can robots assemble an IKEA chair? *Science Robotics*, 2018[2] Lee et al., IKEA Furniture Assembly Environment. ICRA, 2021

Problem Definition

Given: A set of 3D parts and final assembled state

Goal: A real-world feasible, sequentially valid assembly plan

Motivation

In manufacturing industry, the assembly process is usually planned by humans with hardcoded instructions.

Challenges

1. Part motion planning

Geometric path-planning doesn't generalize well on complex assembly, because

- Large search space (6 DoF 3D poses)
- Highly constrained

RRT [LaValle 1998]

- Arbitrary shape
- "Narrow passage" problem
- Hard to deal with rotational motion

Challenges

2. Physical feasibility

- Assembly is conducted under physical constraints (gravity)
- Must consider physical stability of parts for robotic execution

Challenges

3. Sequence planning under constraints

- Number of possible assembly sequences grow factorially
- Due to **precedence constraints**, only few of them are actually valid

Assembly Path Planning

Presents : ASAP Automated Sequence Planning for Complex Robotic Assembly with Physical Feasibility

Input & output

ΚΔΙΣΤ

ASAP | Assembly by Disassembly

Assembly of n parts \rightarrow **O(n!)** search space

Assume rigid bodies, then

- Assembly = reversed disassembly
- Disassembly of n parts $\rightarrow O(n^2)$ search space (efficient!)

ASAP | Key Components

ASAP | Key Components

Part Motion Planning

Q. "How can I take part P out of assembly G"?

Apply actions (forces / torques) in physics-based simulation

Check for updated part poses

Use a tree search (BFS) to find the action sequence

Part Motion Planning

Part Motion Planning

Q. "How can I take part P out of assembly G"?

12 discrete actions (axis-aligned F & τ)

ASAP | Key Components

Stability Check

Q. "Is G at pose s stable under gravity?"

Two-part problem:

- 1. Finding candidate poses
- 2. Performing the **stability check** for a given pose

Stability Check

Q. "Is G at pose s stable under gravity?"

1. Finding candidate poses

Quasistatic pose estimator gives a few 'good' candidate poses

- Assumes slow, gentle placements
- Poses determined by geometry & mass distribution alone

Stability Check

Q. "Is G at pose s stable under gravity?"

2. Stability check for a given pose

Physics-based simulation

Check if any parts fall after certain time steps

Evaluate stability conditioned on the pose and parts to hold

Part-holding strategy

Identify which parts are to be held (by grippers/fixtures)

How to hold N parts by M fixtures?

ASAP | Key Components

Q. "What is a viable sequence to disassemble G?"

Q. "What is a viable sequence to disassemble G?"

def asap():

tree.add_node(root_node)
for node in select_node(tree)
for part in select_part(node):
 Part selection
 for pose in select_pose(node):
 Pose selection
 Check_assemblable(node, part, pose)
 check_stable(node, part, pose)
 if success:
 Child_node = node \ {part}
 tree.add_edge(node, child_node)

Bottom: disassembled

Summary

Walkthrough on robotic assembly planning pipeline

- 1. Part motion planning : Discrete action sampling
- 2. Physical stability check : Physics-based simulation
- 3. Assembly sequence planning : Disassembly tree search

Thank you

- 1. In ASAP, which of the following is used for assembly sequence planning?
 - a. RRT
 - b. Disassembly tree search
 - c. A* algorithm
- 2. The main motivation behind 'assembly by disassembly' is to reduce the search space. (T / F)

Part Pose Statistics: Estimators and Experiments

Represents : 'randomly dropped' Part Pose Estimator Estimate the probability of each face making contact with the ground

Intuition :

The most stable pose of the part is the one in which the part is most likely to land when dropped

Method :

The larger the spherical surface area projected through each face from the component's center of mass, the more stable the component is.

Photographs of the rectangular black stereo button in its seven stable states.

Fig. 3. Computing initial probabilities for each face.

TABLE III RECTANGULAR BLACK STEREO BUTTON DATA

Pose	Quasi- Static	P'turbed Q-S	Dynamic Sim.	Physical Tests ^a
1	36,2	47.3	54.1	56.0
2	16.0	25.5	24.1	24.5
3	17.4	17.0	14.0	13.6
4	8.1	1.2	1.4	4.4
5	10.6	4.5	5.3	1.4
6	7.5	4.4	1.0	0.3
7	4.3	0.0	0.3	0.0
error	14.0	5.8	1.4	-

Physics-based Simulation (SDF)

Rigid body dynamics from RedMax [Xu et al. 2021] [Wang et al. 2019]

Signed distance field (SDF) for object representation

Accurate and efficient contact-rich simulation (also differentiable and open-source)

Bullet [Coumans and Bai 2021] Convex decomposition

Factory [Narang et al. 2022] (Concurrent)

Part Pose Statistics: Estimators and Experiments

Represents : 'randomly dropped' Part Pose Estimator

Estimate the probability of each face making contact with the ground

intuition :

The most stable pose of the part is the pose that is most likely to land when dropped

e.g. thrown vans always land upside (most stable pose)

method :

estimate the probability of the landing with specific face of part by projecting the convex hull into unit sphere, calculate the projected area

probability A_i that the part will land on face F_i under quasi-static conditions.

$$A_i = \frac{\beta_0 + \beta_1 + \beta_2 - \pi}{4\pi}$$

 A_i Projected area (solid angle) of face F_i on the unit sphere

 $eta_0,eta_1,eta_:$ Spherical interior angles of the projected triangle

Q. "What is a viable sequence to disassemble G?"

def asap():

tree.add_node(root_node)
for node in select_node(tree)
Node s

Node selection -

for part in select_part(node):

for pose in select_pose(node):

check_assemblable(node, part, pose)
check_stable(node, part, pose)

if success:

child_node = node \ {part}
tree.add_edge(node, child_node)

return tree

What is a viable sequence to disassemble G?

Finding a feasible method fast

KAIST

Parts farther from the assembly center are prioritized for disassembly

