Student Lecture: **Staged Approaches for Universal Dexterous Grasping**

Team 3

Seungwan Kang, Hajun Park

Contents

1. Introduction to Dexterous Grasping

2. Overview of Fundamental Studies

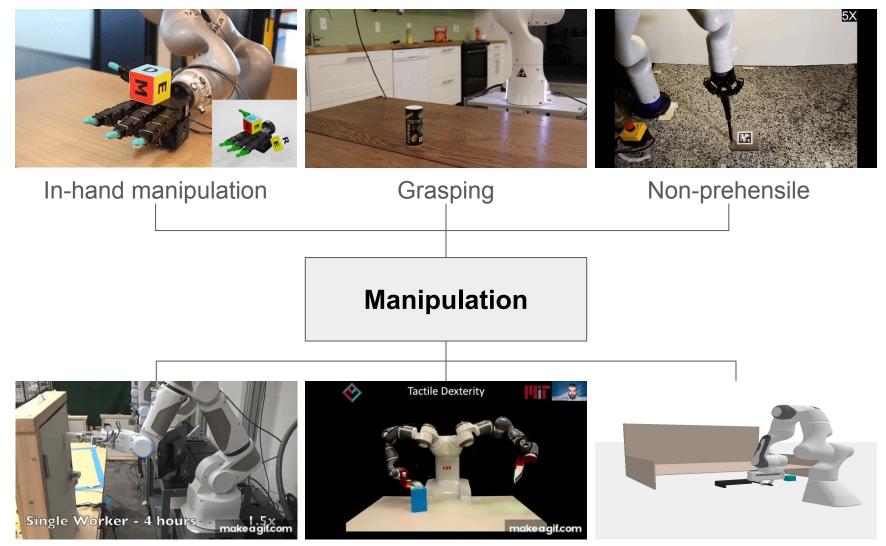
3. Learning-based Methods

4. Recent Works

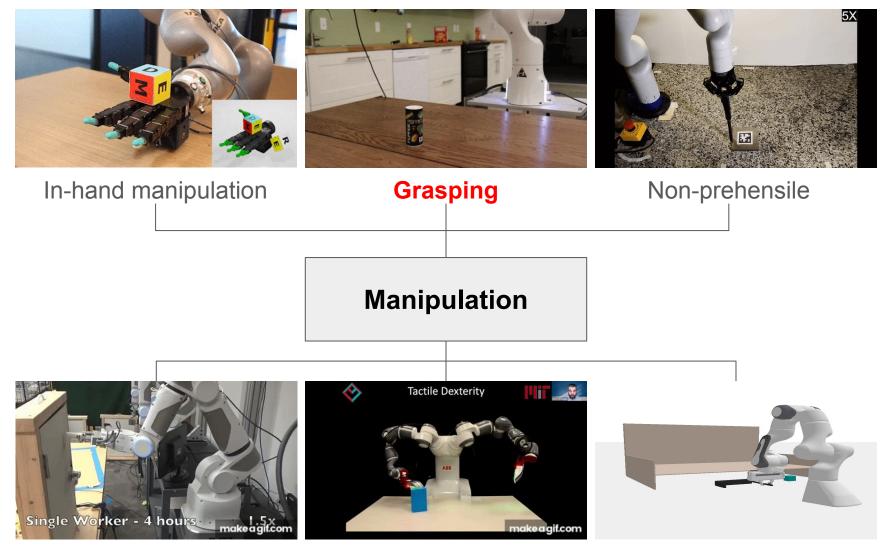
1. Introduction to Dexterous Grasping

1.1. Grasping in Robotics

1.2. What is Dexterous Grasping?

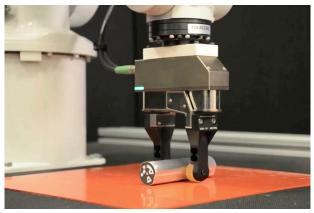


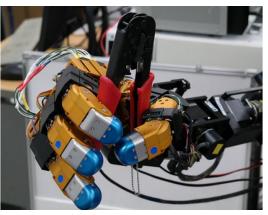
Some high-level tasks



Some high-level tasks

- Serving as a foundation for manipulation tasks such as picking, holding, and moving objects.
- There are typically two types in grasping mechanisms:
 parallel grippers and dexterous hands





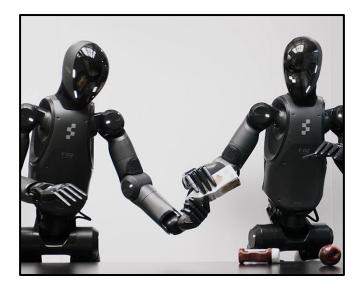
- Image from Robotics & Automation

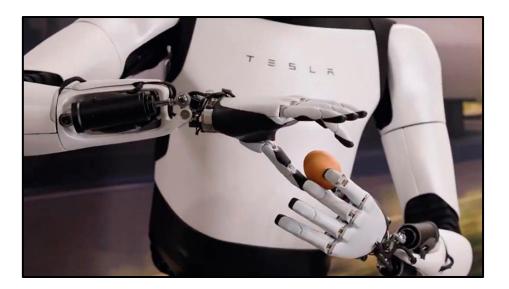
- Grasping with parallel grippers has achieved great success in universally grasping unknown objects (Grasp-Anything, 2024 ICRA)
- But, parallel grippers have their **limitation** on **complicated and functional manipulation**

- Image from NVIDIA developer

1.2. What is Dexterous Grasping?

- Use of robotic hands with high DoFs
 → more diverse and intricate interactions
- Recent humanoid robots are all equipped with advanced dexterous hands
 - \rightarrow dexterous manipulation become more important!





2. Overview of Fundamental Studies

2.1. Overview of Dexterous Manipulation (ICRA, 2000)

2.2. Popular Tool: GraspIt!

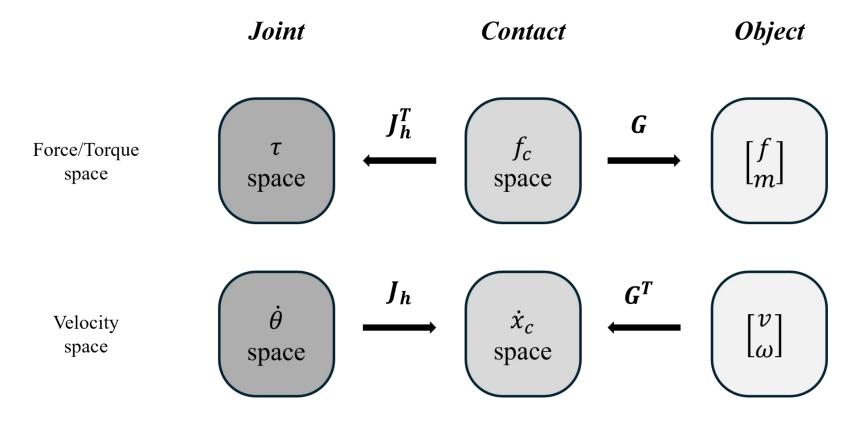
2.3. Some Advances in Analytical Approaches

2.4. Limitation of Non-Learning Methods

2.1. Overview of Dexterous Manipulation

1. Model-Based Approach

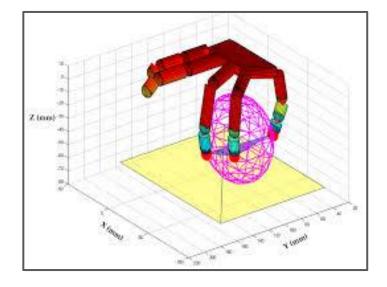
- J_h: hand jacobian, G: grasp jacobian
- Get each joint force



2.1. Overview of Dexterous Manipulation

2. How to Immobilize an Object

- Form closure
- Force closure



- 3. Grasp Planning
 - Grasp map
 - Graphical representation of all possible stable grasps
 - Grasp gait
 - The sequence of **finger motions and regrasping**

2.1. Overview of Dexterous Manipulation

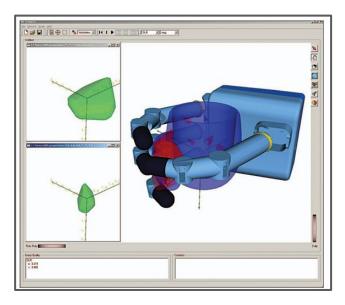
4. Grasp Optimization and Quality Measures

- What is the best grasp?
 - Consider contact location, contact force, finger pose, task property
- Some quality metrics
 - Task ellipsoid (wrench requirement + twist requirement)
 - Dynamic stability (against external force)
 - Q1
 - object penetration
 - Others...

2.2. Popular Tool: Grasplt!

(Robotics & Automation, 2004)

- **Simulator** for synthesizing stable grasps via collision detection and optimization
- Limitations
 - High computational cost (~10mins for an optimization)
 - Due to simplified physics, limited in real-world applications
 - Requires full object geometry (oracle inputs)
 - Lack of pose diversity



2.3. Some Advances...

Grasping-Force Optimization for Multifingered Robotic Hands Using a Recurrent Neural Network (T-RO, 2004)

- Real-time grasp-force optimization

Hand posture subspaces for dexterous robotic grasping (IJRR, 2009)

- Using low-dimensional subspace of the hand DOF space for finding hand postures appropriate for a given task

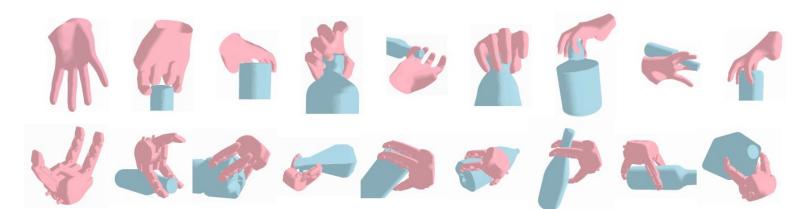
Push-grasping with dexterous hands: Mechanics and a method (IROS, 2010)

- Enabling an agent to grasp more object using **push-grasping**

2.3. Some Advances...

Synthesizing diverse and physically stable grasps with arbitrary hand structures using differentiable force closure estimator (RA-L 2021)

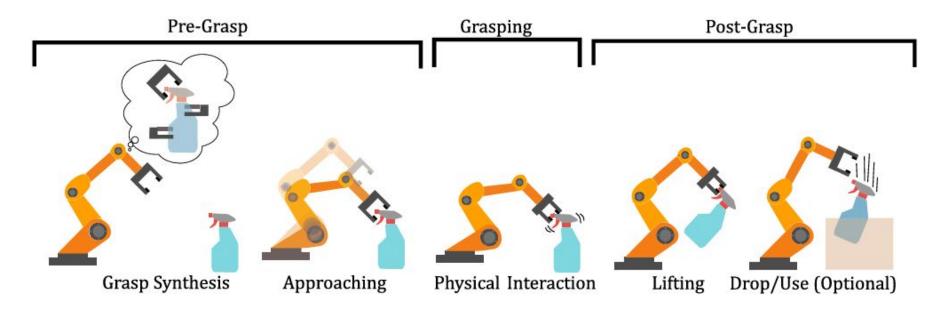
- Overcome flaws of classic force closure evaluation (**speed** ↑)
- Various grasp poses without prior data
- Achieved some generality
- Limitations
 - Unrealistic grasp for concave object
 - Incompleteness in penetration detection
 - Require object's exact 3D model



3. Learning-Based Methods

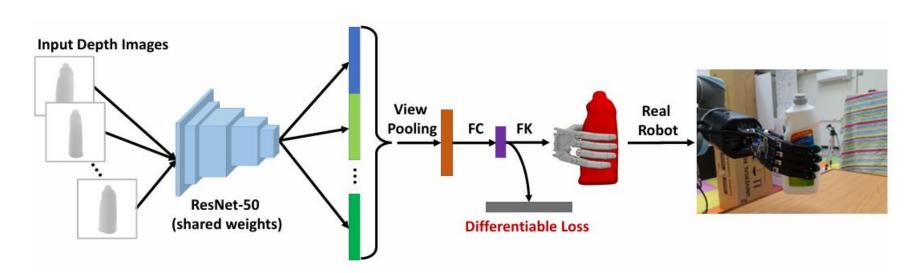
3.1. Learning-Based Methods: Synthesizing

3.2. Learning-Based Methods: Grasping Policy



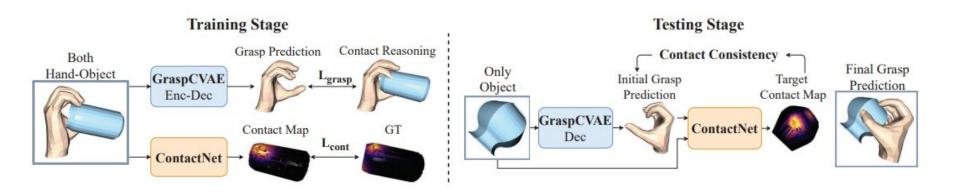
Deep differentiable grasp planner for high-DoF grippers (RSS 2020)

- Framework: ResNet-50 based neural network
- Small scale dataset + simple network
- Slow learning... (fine-tuning)
- Low diversity



Hand-Object Contact Consistency Reasoning for Human Grasps Generation (ICCV 2021)

- Framework: Conditional VAE + ContactNet
- More stable, natural, generalizable, fast
- Suffer from severe mode collapse leading to limited diversity
- Require large-scale, high-quality dataset



- Benchmark Datasets (based on simulation)
 - **DexGraspNet** (ICRA 2023)
 - 1.32 million ShadowHand grasps on 5,355 objects
 - >133 object categories
 - >200 diverse grasps for each object instance
 - **DexGraspNet 2.0** (CoRL 2024)
 - For cluttered scene
 - 1319 objects, 8270 scenes, and 427 million grasps

3.2. Learning-based Methods: Grasping Policy

- DAPG (RSS 2018)
 - Imitation learning + RL
- HGA-Dex (CoRL 2021)
 - Affordance map \rightarrow RL conditioned
- UniDexGrasp (CVPR 2023)
 - Pose generation \rightarrow Teacher-Student Framework (RL + distillation)

4. Recent Works

4.1. UniDexGrasp (2023, CVPR)

4.2. UniDexGrasp++ (2023, ICCV)

4.3. DexGrasp Anything (2025 CVPR)

4.1. Recent Works: UniDexGrasp (2023, CVPR)

Problem:

In Dexterous grasping, previous researches had problem of
 Low generalization quality, Relying on oracle state

Solution:

- Use **Two task division** (Synthesizing and Grasping Policy)
- "Rotation Generation" and "Translation & Articulation generation"
 separately to avoid mode collapse
- **Teacher-Student Framework** for grasp with realistic input

4.1. Recent Works: UniDexGrasp (2023, CVPR)

Dexterous Grasp Proposal Generation

Grasp Orientation Generation

Input:	$X_0 \in \mathbb{R}^{N imes 3}$	$({ m input point cloud})$
Output:	$R\in\mathrm{SO}(3)$	(rotation matrix)

Grasp Translation and Articulation Generation

Goal-Conditioned Dexterous Grasping Policy

Teacher Policy π^{ε}

 $egin{aligned} ext{Input:} & \widetilde{s}^o_t ext{ (object state)} \in \mathbb{R}^{D_s} \ extbf{Output:} & c ext{ (category label)} \in \{1,\ldots,C\}, \ & a_t ext{ (action)} \in \mathbb{R}^{26} \ & ext{ [using reinforcement learning]} \end{aligned}$

Student Policy π^{S}

4.1. Recent Works: UniDexGrasp (2023, CVPR)

Details:

- Correct pose using **ControlNet** by using contact map
- **Object Curriculum Learning** by increasing training data set from one object to categories

Result:

- High performance in both "Grasping quality" and "Object penetration"
- Language-guided Dexterous Grasping by combining with CLIP

4.2. Recent Works: UniDexGrasp++ (2023, ICCV)

Problem:

- Previous research had limit in Grasping Policy
 - Even Teacher policy had poor performance
 - Previously, category did not consider grasping pose

Solution:

- GeoCurriculum: Train in order of similar geometry features
- GeoClustering: Cluster tasks and distribute to specific models
- **GiGSL**: **Repeat** "Task assignment" and "Policy distillation"

4.2. Recent Works: UniDexGrasp++ (2023, ICCV)



4.2. Recent Works: UniDexGrasp++ (2023, ICCV)

Result:

- 10~12% of performance improvement
- Also worked well in Meta-World benchmark

4.3. Recent Works: DexGrasp Anything (2025, CVPR)

Problem:

- Previous researches had limit in pose generation
 - Lack of constraints about physical rules
 - Small dataset and are based on simulation

Solution:

- **DDPM** based diffusion pose generation:
 - Add loss about physical constraints
 - Give additional **guidance** using physical loss

Result:

- Performance improved in all aspect (SOTA)
 - Success Rate, Penetration and Diversity

4.4. Limitations of recent works

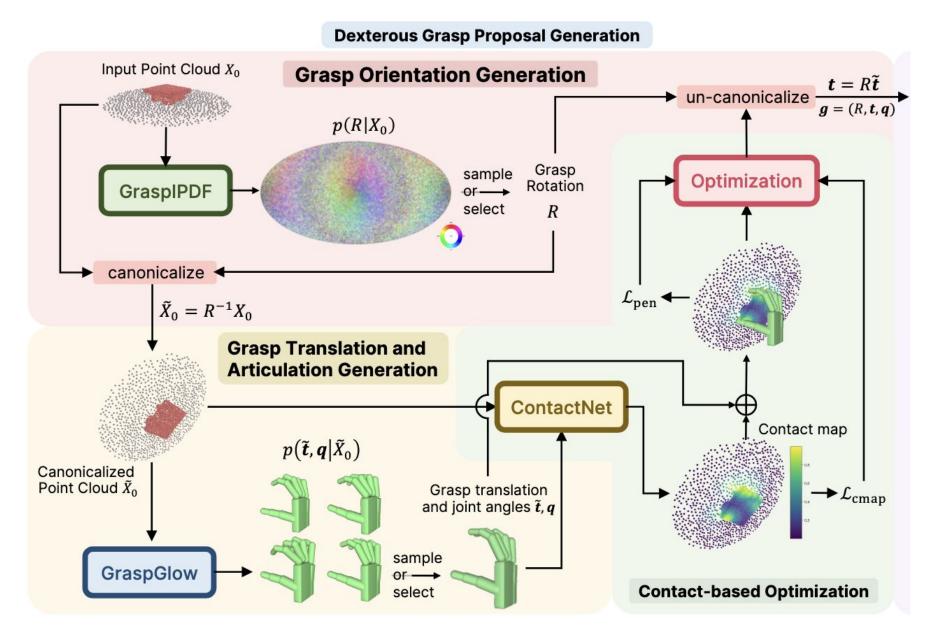
- Rigid objects only. Not considering elasticity, texture, fluidity
- Task-oriented manipulation can be different from grasping
 → synthesis of reward for arbitrary dexterous task
- Integration with other dexterous manipulation is needed for both dataset and policy

Thank you

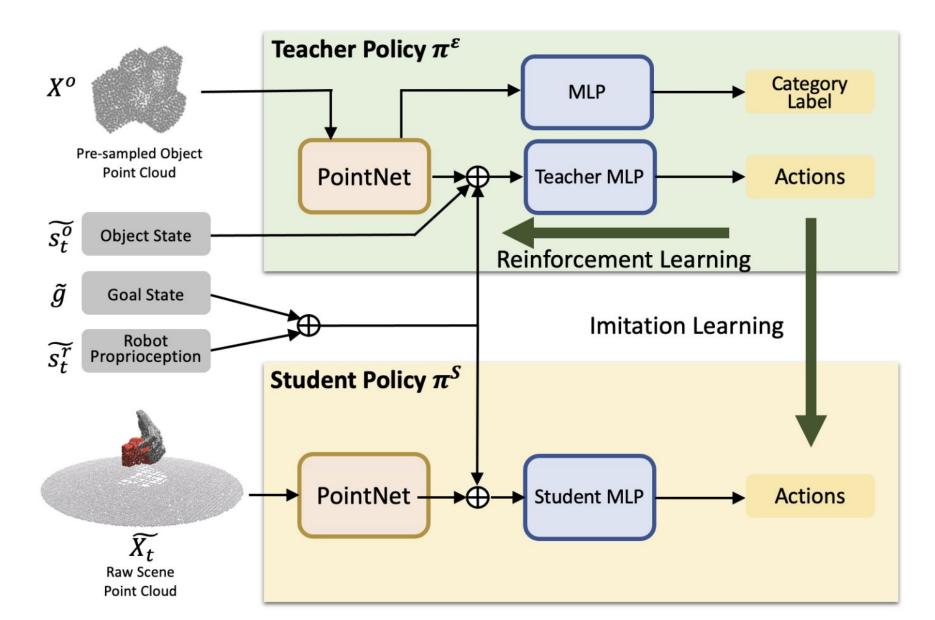
Prepared Appendix

- Detailed figure for UniDexGrasp
- Detailed figure for UniDexGrasp++
- Detailed figure for DexGrasp Anything

Appendix UniDexGrasp



Appendix UniDexGrasp



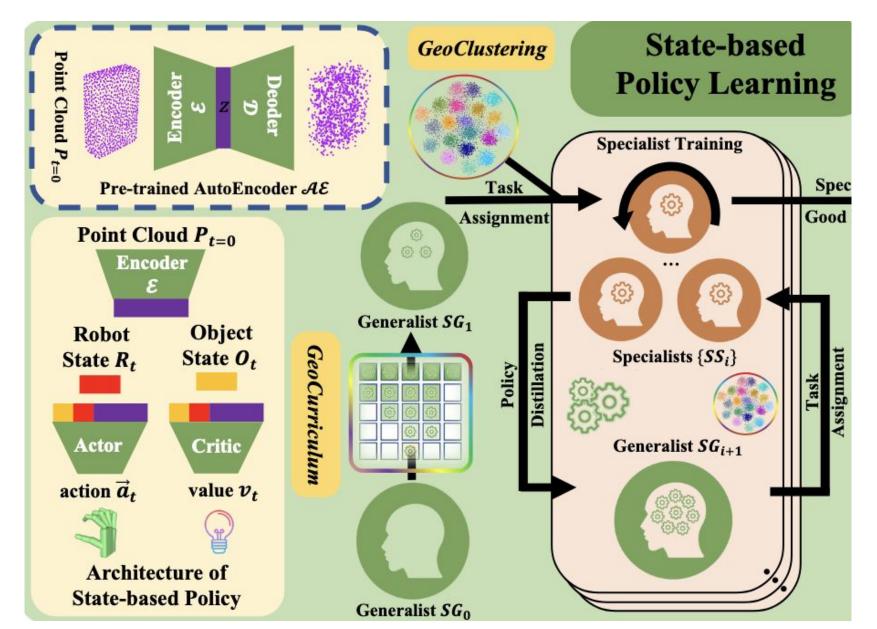
Appendix UniDexGrasp

Method	se	en cat	uns	een cat	$\sigma_R\uparrow$	$\sigma_{T R}\uparrow$	$\sigma_{ heta R}\uparrow$	$\sigma_{ m keypoints} \uparrow$	
	$Q_1\uparrow$	obj. pen.↓	$Q_1 \uparrow$ obj. pen. \downarrow (a		(degree)	(cm)	(degree)	(cm)	
GraspTTA [24] (C + T)	0.0269	0.354	0.0239	0.363	4.9	/	/	2.909	
DDG [28]	0.0357	0.319	0.0223	0.338	0.0	/	/	0.000	
R + C + T	0.0362	0.251	0.0336	0.235	128.0	0.095	0.227	5.982	
ReLie [<mark>16</mark>] + T	0.0190	0.219	0.0191	0.225	109.9	/	/	6.698	
ProHMR [26] + T	0.0210	0.202	0.0221	0.192	88.4	/	/	5.837	
ours $(R + GL + T)$	0.0423	0.205	<u>0.0322</u>	0.220	127.6	1.143	5.806	<u>6.389</u>	

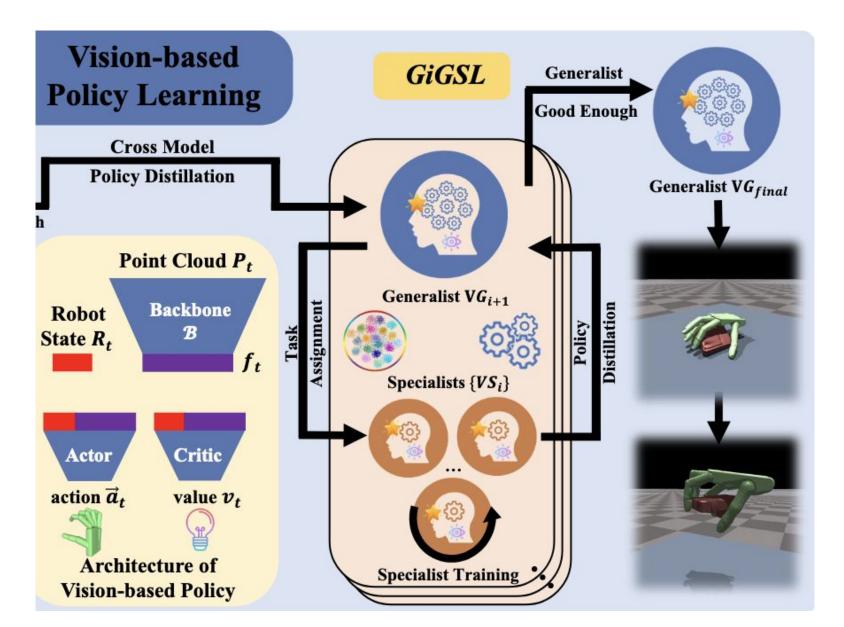
Table 1. **Results on grasp goal generation.** R: GraspIPDF, C: CVAE, T: test-time adaptation, GL: GraspGlow, and obj. pen. is the penetration between the hand and the object.

Model	Train	Test				
		unseen obj	unseen cat			
		seen cat				
MP	$0.12{\pm}0.01$	$0.02{\pm}0.00$	$0.02{\pm}0.01$			
PPO [52]	$0.14{\pm}0.06$	$0.11 {\pm} 0.04$	$0.09 {\pm} 0.06$			
DAPG [45]	$0.13 {\pm} 0.05$	$0.13 {\pm} 0.08$	$0.11 {\pm} 0.05$			
ILAD [<mark>59</mark>]	$0.25 {\pm} 0.03$	$0.22{\pm}0.04$	$0.20{\pm}0.05$			
Ours	$0.74{\pm}0.07$	$0.71{\pm}0.05$	$0.66{\pm}0.06$			
Ours(w/o SC)	$0.59{\pm}0.06$	$0.54{\pm}0.07$	0.51 ± 0.04			
Ours(w/o cls)	$0.65 {\pm} 0.05$	$0.64{\pm}0.06$	$0.60{\pm}0.07$			
Ours(w/o OCL)	$0.31 {\pm} 0.07$	$0.23 {\pm} 0.06$	$0.21 {\pm} 0.04$			
Ours(1-stage OCL)	$0.58 {\pm} 0.07$	$0.55 {\pm} 0.03$	$0.55{\pm}0.05$			
Ours(2-stage OCL)	$0.68{\pm}0.06$	$0.67{\pm}0.07$	$0.62{\pm}0.05$			

Appendix UniDexGrasp++



Appendix UniDexGrasp++



Appendix UniDexGrasp++

Model	Train(%)	Test(%)				
		Uns. Obj. Seen Cat.	Uns. Cat.			
PPO[55]	24.3	20.9	17.2			
DAPG[49]	20.8	15.3	11.1			
ILAD[69]	31.9	26.4	23.1			
GSL[29]	57.3	54.1	50.9			
UniDexGrasp[70]	79.4	74.3	70.8			
Ours (state-based)	87.9	84.3	83.1			
PPO[55]+DAgger[51]	20.6	17.2	15.0			
DAPG[49]+DAgger	17.9	15.2	13.9			
ILAD[69]+DAgger	27.6	23.2	20.0			
GSL[29]+DAgger	54.1	50.2	44.8			
UniDexGrasp[70]	73.7	68.6	65.1			
Ours (state)+DAgger	77.4	72.6	68.8			
Ours (vision-based)	85.4	79.6	76.7			

Table 1: The Average Success Rate of the Evaluated Objects on Both Training and Test Set. For better clarity, we use green for the state-based policy and blue for the vision-based policy.

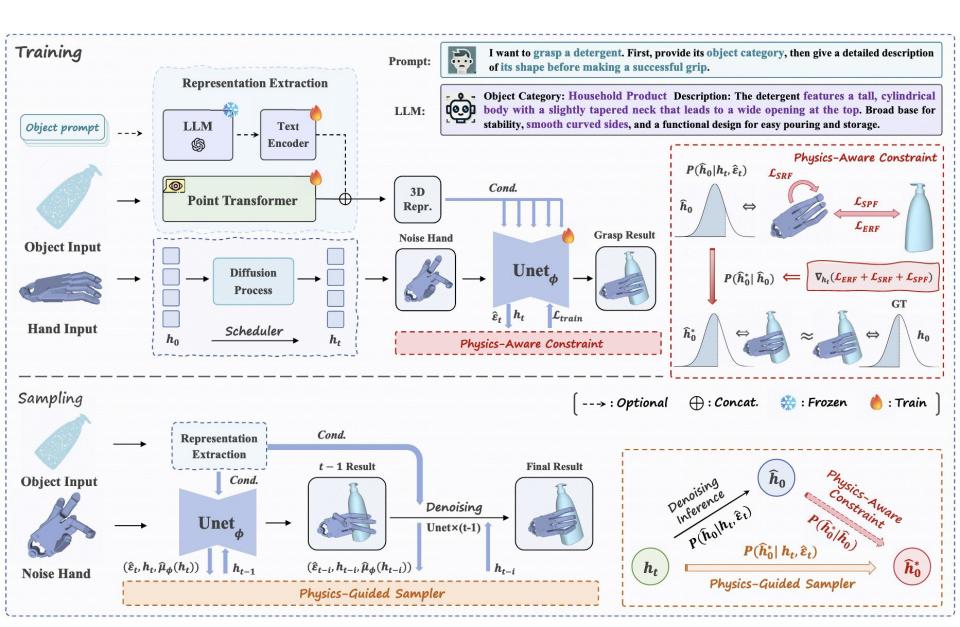
Model	Train(%)	Test(%)					
		Uns. Obj. Seen Cat.	Uns. Cat.				
No Curriculum	30.5	23.4	20.6				
OCL[70]	79.4	74.3	70.8				
GeoCurriculum (3)	81.3	75.6	73.3				
GeoCurriculum (4)	82.7	76.8	74.2				
GeoCurriculum (5)	82.9	76.4	74.0				

Table 6: **Ablation study on** *GeoCurriculum*. OCL refers to the Object Curriculum Learning proposed in [70]. The numbers in brackets represent the number of stages for curriculum learning.

Model	Train(%)	Test	£(%)		
		Uns. Obj.	Uns. Cat.		
		Seen Cat.	Uns. Cat.		
Random	77.0	71.9	68.2		
Category Label.	79.7	73.9	74.1		
Ours	85.4	79.6	76.7		

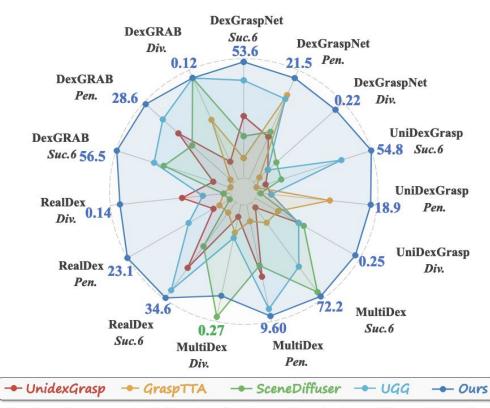
Table 9: **Ablation study on the pre-trained autoencoder.** The features from the encoder are used in *GeoClustering* in the state-based setting.

Appendix DexGrasp Anything



Appendix DexGrasp Anything

Dataset	DexGraspNet				UniDexGrasp				MultiDex			RealDex				DexGRAB				
Method	Suc.6 ↑	Suc.1	† Pen.↓	. Div ↑	Suc.6	↑ Suc.1 ↑	Pen.↓	Div ↑	Suc.6 1	• Suc.1 ↑	Pen.↓	Div ↑	Suc.6 1	• Suc.1 1	Pen.	. Div ↑	Suc.6 ↑	Suc.1	r Pen.↓	. Div ↑
UniDexGrasp [47]	33.9	70.1	31.9	0.14	23.7	65.5	24.5	0.14	21.6	47.5	13.5	0.08	27.1	59.4	39.0	0.11	20.8	55.8	37.4	0.08
GraspTTA [11]	18.6	67.8	24.5	0.13	21.0	65.3	21.2	0.10	30.3	62.8	19.0	0.11	13.3	46.4	40.1	0.09	14.4	51.0	51.4	0.10
SceneDiffuser [10]	26.6	66.9	31.0	0.15	28.3	74.8	25.1	0.15	69.8	85.6	14.6	0.27	21.7	56.1	42.0	0.09	39.1	85.0	41.1	0.12
UGG [21]	46.9	79.0	25.2	0.14	46.0	83.2	24.5	0.14	55.3	93.4	10.3	0.12	32.7	63.4	34.4	0.10	42.7	90.6	33.2	<u>0.12</u>
Ours Ours(w/ LLM)	<u>53.6</u> 57.5	<u>90.4</u> 90.6	<u>21.5</u> 17.8	<u>0.22</u> 0.23	54.8 53.1	<u>90.8</u> 91.2	<u>18.9</u> 18.8	0.25 <u>0.23</u>	<u>72.2</u> 79.1	<u>96.3</u> 98.1	9.6 11.4	$\frac{0.23}{0.22}$	<u>34.6</u> 44.8	<u>71.2</u> 73.7	23.1 27.7	0.14 <u>0.13</u>	<u>56.5</u> 57.9	<u>91.8</u> 92.7	28.6 <u>30.4</u>	<u>0.12</u> 0.13



Suc. 6 \rightarrow Success rate (6 directions) Pen. \rightarrow Penetration Div. \rightarrow Diversity