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Review

Parallel Monte Carlo Tree Search with Batched Rigid-body Simulations for Speeding up Long-Horizon Episodic Robot Planning
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1. Motivations
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Motivations

Purely Geometric view can be insufficient for Navigation

® All tall grass can be considered as an obstacle

KAIST



Motivations

Enabling robots to reason about navigational affordances

It is tall grass
We can traverse this area

There are two possible paths
Paved path is better than
bumpy grass in terms of stability.
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Motivations

This problem has been approached from the standpoint
of semantic understanding

® Requires human — supervision
® Only consider traversability(by using labeling)

The main idea is that using robot’s own past experience

® With self-supervision (without human — supervision)
® Not only traversability but many physical attributes
(avoiding collision, ground type - vehicle interaction)
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Motivations

® Overview of BADGR (Berkeley Autonomous Driving Ground Robot)

1. Collecting Data
- Collecting Experience

2. Self — Supervised Data Labelling
- robot’s position, collision, terrain bumpiness etc.

3. Neural Network Predictive Model (Forward Dynamics Model)
- given input(image, command sequence), predict future events

4. Planning and Navigation

Using Robot’s experience to train a predictive model
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Motivations

® Overview of BADGR (Berkeley Autonomous Driving Ground Robot)

3. Neural Network

1. Collecting Data Predictive Model
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2. Related Work
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Related Work

> Geometric view-based navigation » Semantic view-based navigation

£
Rl S
“imei &

b’

® Estimate Depth & Shape of Obstacle

® Give meaningful labels as a semantic

information

® Plan a collision free path from estimated
scene Plan a collision free path considering

semantic information

® Can not handle semantic information
(ex. Tall Grass, puddle )

® Need exhaustive human - supervision

® Does not consider ground-vehicle
interaction
(Bumpiness and Stability of Vehicle)

® Weak at handling textureless scenes
(Lidar, Depth sensor limitation)

Wang, Yan, et al. "Pseudo-lidar from visual depth estimation: Bridging the gap  Valada, Abhinav, et al. "Adapnet: Adaptive semantic segmentation in adverse

in 3d object detection for autonomous driving." Proceedings of the IEEE/CVF environmental conditions." 2017 IEEE International Conferemmurs
11 Conference on Computer Vision and Pattern Recognition. 2019. and Automation (ICRA). IEEE, 2017.
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3. Method
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Method - Collecting Data

1. Collecting Data

Record T step
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Data Buffer

3. Neural Network
Predictive Model
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Method - Collecting Data

Randomly sample a sequence of commands, and execute
commands in real environment

Records every observation(RGB image), command,
robot position, IMU data.

1. Collecting Data
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Method — Self-Labeling

2. Self Labeling

—
(2
e
)
o
=
5
@
o
o
2
Y

Record T step

| Step Observation Command Global coordinate

I t=0 0o Co (S0, yo)

I t=T  or cr (Car, yr)

|

2. Self Labeling Self - Labeling

Step  Observation Command Local coordinate Collision

| sequence sequence sequence
t=20 (o) Coy--CH—1 (Lozy, Loyy), (Foxp, Loyy) Py,.Py
t=T-H OT—H CT—H, - -CT—1 (“""@r-ne,"""yr-n1) Pr_y,y,..Py

(br-ngy, Lr-nyy)

Add to Buffer

15

Data Buffer

3. Neural Network
Predictive Model
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Method — Self-Labeling

After Collecting a Data, BADGR give labels for specific
navigational events.
Mapping : Raw sensor data = Navigation event

Navigational Events Labeling Criterion

Collision 1. Distance to Obstacle < Certain threshold
2. Change rate of linear acceleration > Certain threshold

Driving Over Bumpy terrain 1. Angular Velocity Magnitude > Certain threshold
2. Self Labeling Self - Labeling
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Method
Neural Network Predictive Model
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Method
Neural Network Predictive Model

BADGR uses collected data to train a deep neural network
predictive model
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Data Buffer

3. Neural Network
Predictive Model
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Method — Planning and Navigation

3. Neural Network
Predictive Model
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Method — Planning and Navigation

From predicted K different future events, it select best
action sequence which maximize task specific rewards
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4. Experimental Results
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Experimental Results

Task : Reaching a specified goal position in Urban Environment

Method : 5 different start locations
5 runs per each start location

Total 25 trials

Goal ¥ (Collision LIDAR (geometry-based policy) BADGR (ours)

BADGR w/o

meters

o0 11 22 33 440 11 22 33 440 11 22 33 440 11 22 33 44

meters meters meters meters
| Method | Successfully Reached Goal | Avg. Bumpiness |
BADGR (ours) 25/25 (100%) 8.7+44
BADGR w/o bumpy cost 25/25 (100%) 15.0£34
LIDAR 25/25 (100%) 13.3+2.9
Naive 5125 (20%) N/A

LIDAR : Geomtric View Based Navigation
Naive : Simply drives straight towards the specified goal

KAIST
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5. Discussion
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Discussion

1) BADGR should collect data in real environment,
Can we replace data collecting process from real to
simulation ?

2) BADGR only consider two cases 1) collision 2) travel
on the bumpy road.
Can we extend BADGR to dense environment ?
1) collision 2) bumpiness 3) density of obstacle
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Problems

1) What is the method that isn’t accounted for in BADGR ?

a) Forward Dynamics Model

b) Human supervision

c) Model Predictive Path Planning
d) Self - Labeling

2) How predictive model network can be formulated ?
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