
OpenVLA : An Open-Source 
Vision-Language-Action model

Team 5
Kim Jaemin

Jung Geumyoung



Motion Planning Diffusion: Learning and Planning of Robot Motions with Diffusion Models



Contents

1. Introduction

2. OpenVLA

○ Architecture

○ Training

3. Experiment

○ Out-of-box generalization

○ Fine-tuning

○ Quantization

4. Limitations & Summary

5. Quiz



Introduction l Motivation



Introduction l Motivation



Introduction l Challenges

Existing works are : 

1. Parameter-wise Heavy (~55B parameters)

2. Closed-Source

3. Lacking fine-tuning exploration

55B



OpenVLA l Robotic Vision - Language - Action model

consists of 7B parameter, fully open-source, support efficient fine-tuning 



OpenVLA l Contribution

Franka Emika Panda Robot Google Robot Bridge V2 WidowX Robot

1. Outperform SOTA RT-2-X (55B) by 16.5% in absolute task success rate

- work across 29 tasks, multiple robot embodiments, with fewer parameters(7B)

2. Demonstrate effectiveness of modern parameter-efficient fine-tuning and quantization

3. First open-source generalist VLA thus supports future research



OpenVLA l Architecture

Large-Language-Model



OpenVLA l Architecture

Vision-Language-Model



OpenVLA l Architecture

Vision-Language-Action model



OpenVLA l Architecture

OpenVLA architecture consists of three key components :

1. Vision encoder that concatenates Dino V2 and SigLIP features

2. Projector that maps visual features to the language embedding space

3. Llama 2 7B-parameter large language model
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OpenVLA l Architecture

low-level spatial information, spatial reasoning : Dino V2 high-
level semantic associations between images and text : SigLIP

OpenVLA architecture consists of three key components :

1. Vision encoder that concatenates Dino V2 and SigLIP features

2. Projector that maps visual features to the language embedding space

3. Llama 2 7B-parameter large language model



OpenVLA l Architecture

continuous 

robot action

discrete

tokens

Enabling VLM  to predict robot actions : next-token prediction (CE loss)

7- dim : [Δx, Δy, Δz, Δroll, Δpitch, Δyaw, gripper status] 

Example Output : [ 0.1, 0.23, 0.42, 0.16, 0.81, 0.39, 0.33] 



OpenVLA l Training

Training Data : Open X-Embodiment dataset 70 robot dataset with 2M trajectories

Curated under below conditions, selected 970k robot episodes

1. Single arm manipulations, with 3rd person view camera

2. Ensure a balanced mix of embodiments, tasks, scenes



OpenVLA l Training

Other considerations during training : 

● OpenVLA model is trained on a cluster of 64 A100 GPUs for 14 days

○ Inference : 15GB of GPU memory when loaded bfloat16



Experiments

Experiments validate 3 key aspects of OpenVLA:

1. Performance as a Generalist Policy

Zero-shot generalization tests

2. Effectiveness of Fine-tuning

New robot setups & tasks

3. Performance with Limited Hardware

Parameter-efficient FT, quantization
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Categorizing the term “Generalization” :

Visual : unseen backgrounds, distractor objects, appearances of objects

Motion : unseen object positions/orientations

Physical : unseen object sizes/shapes

Semantic : unseen target objects, instructions, concepts from the Internet

Experiment | Generalization

Settings :  Robot and tasks from pre-trained data

WidowX robot from BridgeData V2 evaluation

Mobile manipulation robot from RT-1 and RT-2 evaluation

1. Performance as a Generalist Policy

Zero-shot generalization tests

WidowX robot

Mobile manipulation robot
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“Adapting a pretrained VLA model to a new robot, new environment, or new task”

● Quick adaptation to a new setup, with a much smaller dataset

● Implicitly captures per-setup differences

○ Camera pose, embodiment, environment, reference frame, ...

Experiments | Fine-Tuning
2. Effectiveness of Fine-tuning

New robot setups & tasks



Experiments | Fine-Tuning

“Is OpenVLA adaptable to new robot setups and tasks?”

● Prepared Franka robot arm setups not in pretraining data

● Models trained / fine-tuned on 7 tasks, 10-150 demonstrations each

○ Diffusion policies, Octo, OpenVLA (scratch and pretrained)

2. Effectiveness of Fine-tuning

New robot setups & tasks



Experiments | Fine-Tuning

1. Diffusion Policy → good for narrow, single-instruction tasks
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Experiments | Fine-Tuning

1. Diffusion Policy → good for narrow, single-instruction tasks

2. Fine-tuned VLAs → better with multiple objects & language conditioning

3. Robot data pretraining → significant performance boost

4. OpenVLA shows strong performance across task types

2. Effectiveness of Fine-tuning

New robot setups & tasks



Experiments

Experiments validate 3 key aspects of OpenVLA:

1. Performance as a Generalist Policy

Zero-shot generalization tests

2. Effectiveness of Fine-tuning

New robot setups & tasks

3. Performance with Limited Hardware
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Experiments | Parameter-efficient FT

Tested different fine-tuning strategies

● Strategies: Full FT, Last layer only, Frozen vision, Sandwich, LoRA

● Criteria: memory requirement, performance

● Remark: LoRA is efficient, with minimal performance degradation!

3. Performance with Limited Hardware

Parameter-efficient FT, quantization



Experiments | Parameter-efficient FT

LoRA: Low-Rank Adaptation of Large Language Models

● Vanilla fine-tuning: update (d x h) weights, expensive

● LoRA: only train B and A, where BA = ΔW (weight updates)

● Insight

○ Pretrained W is near a good solution 

○ For fine-tuning, updating all weights is unnecessary! 

3. Performance with Limited Hardware

Parameter-efficient FT, quantization



Experiments | Quantization

Many foundation models require large GPU memory (even for inference)

● Idea: reduce the precision (# of bits used) of model weights

○ Less memory footprint

○ Extra quantization / dequantization overhead

○ Increased arithmetic error

● Memory Performance tradeoff

3. Performance with Limited Hardware

Parameter-efficient FT, quantization



Experiments | Quantization

● Tested on BridgeData V2 tasks with different quantization levels

● Quantization overhead can reduce throughput

○ 8-bit: throughput too low for a 5Hz control loop

● Quantization can lower GPU memory transfer (improve throughput)

○ 4-bit: reduced memory transfer compensates overhead!

3. Performance with Limited Hardware

Parameter-efficient FT, quantization



OpenVLA | Limitation

● Only support single-image observation

● Inference throughput (Hz)

● Room for performance improvement (90+ %)



OpenVLA | Summary

● Open-source VLA model for manipulators

○ Image + language instruction → robot action

● CV & NLP advancements on robotic applications

● Towards large, ‘generalist’, widely-deployable robot models

○ Robot data pretraining → general performance

○ Fine-tuning (LoRA) → task-specific adaptation

○ Quantization → memory-efficient inference



Thank you



Quiz

1. According to OpenVLA’s fine-tuning experiments, the key benefit of LoRA 

over full fine-tuning is the drastic improvement in performance (task 

success rate).

a. True

b. False

2. Which is NOT true about OpenVLA?

a. OpenVLA can be fine-tuned on new robot tasks with 10-150 demonstrations.

b. OpenVLA strictly outperforms Diffusion Policy across all tasks.

c. OpenVLA supports low-memory deployment using quantization.


	슬라이드 1: OpenVLA : An Open-Source  Vision-Language-Action model
	슬라이드 2: Motion Planning Diffusion: Learning and Planning of Robot Motions with Diffusion Models
	슬라이드 3: Contents
	슬라이드 4: Introduction l Motivation
	슬라이드 5: Introduction l Motivation
	슬라이드 6: Introduction l Challenges 
	슬라이드 7: OpenVLA l Robotic Vision - Language - Action model
	슬라이드 8: OpenVLA l Contribution
	슬라이드 9: OpenVLA l Architecture
	슬라이드 10: OpenVLA l Architecture
	슬라이드 11: OpenVLA l Architecture
	슬라이드 12: OpenVLA l Architecture
	슬라이드 13: OpenVLA l Architecture
	슬라이드 16: OpenVLA l Architecture
	슬라이드 17: OpenVLA l Architecture
	슬라이드 18: OpenVLA l Training
	슬라이드 19: OpenVLA l Training
	슬라이드 20: Experiments
	슬라이드 21: Experiments
	슬라이드 22: Experiment | Generalization
	슬라이드 23: Experiment | Generalization
	슬라이드 25: Experiment
	슬라이드 26: Experiments | Fine-Tuning
	슬라이드 27: Experiments | Fine-Tuning
	슬라이드 28: Experiments | Fine-Tuning
	슬라이드 29: Experiments | Fine-Tuning
	슬라이드 30: Experiments | Fine-Tuning
	슬라이드 31: Experiments | Fine-Tuning
	슬라이드 32: Experiments
	슬라이드 33: Experiments | Parameter-efficient FT
	슬라이드 34: Experiments | Parameter-efficient FT
	슬라이드 35: Experiments | Quantization
	슬라이드 36: Experiments | Quantization
	슬라이드 37: OpenVLA | Limitation
	슬라이드 38: OpenVLA | Summary
	슬라이드 39: Thank you
	슬라이드 40: Quiz

