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Motion Planning Diffusion: Learning and Planning of Robot Motions with Diffusion Models

Learning Trajectory Priors with Diffusion, Guided Sampling for Optimal Paths

® Recap Problem:
0  Optimization-based planners need good initialization
o  Sampling-based planners can be inefficient

® MPD's Solution:
© Learn Prior : Diffusion models learn a generative model of expert trajectories
o0 Guided Sampling : Sample from the posterior by guiding the diffusion reverse process with gradients from
motion planning costs

Diffusion Model Cost Gradients

Guiding sampling towards
optimal regions
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Generates diverse trajectories
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Introduction | Motivation

How Al used to work
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Introduction | Motivation

How robotic learning works now
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Introduction | Challenges

Existing works are :

1. Parameter-wise Heavy (~55B parameters)
2. Closed-Source
3. Lacking fine-tuning exploration
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OpenVLA | Robotic Vision - Language - Action model

consists of 7B parameter, fully open-source, support efficient fine-tuning
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OpenVLA | Contribution

1. Outperform SOTA RT-2-X (55B) by 16.5% in absolute task success rate
- work across 29 tasks, multiple robot embodiments, with fewer parameters(7B)
2. Demonstrate effectiveness of modern parameter-efficient fine-tuning and quantization

3. First open-source generalist VLA thus supports future research

Franka Emika Panda Robot Google Robot Bridge V2 WidowX Robot

Flip Pot Upright (OOD: unseen target object & instruction)

Put Eggplant into Pot




OpenVLA | Architecture
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OpenVLA | Architecture
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OpenVLA | Architecture
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OpenVLA | Architecture

OpenVLA architecture consists of three key components :

1. Vision encoder that concatenates Dino V2 and SigLIP features
2. Projector that maps visual features to the language embedding space
3. Llama 2 7B-parameter large language model
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OpenVLA | Architecture

OpenVLA architecture consists of three key components :

1. Vision encoder that concatenates Dino V2 and SigLIP features
2. Projector that maps visual features to the language embedding space
3. Llama 2 7B-parameter large language model
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OpenVLA | Architecture

Enabling VLM to predict robot actions : next-token prediction (CE loss)

7-dim : [Ax, Ay, Az, Aroll, Apitch, Ayaw, gripper status]

continuous discrete
robot action tokens Example Output : [ 0.1, 0.23, 0.42, 0.16, 0.81, 0.39, 0.33]
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OpenVLA | Training

Training Data : Open X-Embodiment dataset 70 robot dataset with 2M trajectories

Curated under below conditions, selected 970k robot episodes

1. Single arm manipulations, with 3rd person view camera

2. Ensure a balanced mix of embodiments, tasks, scenes
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OpenVLA Training Dataset Mixture

Fractal [V7] 12.7%
Kuka [45] 12.7%
Bridge[0. 13.3%
Taco Play [V, 91] 3.0%
Jaco Play [V5] 0.4%
Berkeley Cable Routing [V0] 0.2%
Roboturk [V7] 2.3%
Viola [V5] 0.9%
Berkeley Autolab URS [VY] 1.2%
Toto [100] 2.0%
Language Table [ (0] 4.4%
Stanford Hydra Dataset [ (] 4.4%
Austin Buds Dataset [ 107] 0.2%
NYU Franka Play Dataset [ [04] 0.8%
Furniture Bench Dataset [ (5] 2.4%
UCSD Kitchen Dataset [106] <0.1%
Austin Sailor Dataset [ 1 07] 2.2%
Austin Sirius Dataset [ | 05] 1.7%

DLR EDAN Shared Control [10Y] <0.1%
TAMLab CMU Pickup Insert 0.9%

UTAustin Mutex [ | | 1] 2.2%
Berkeley Fanuc Manipulation [ 7] 0.7%
CMU Stretch [117] 0.2%
BC-Z[5°] 7.5%
FMB Dataset [ | | ] 7.1%
DobbE [115] 1.4%
DROID [ 1] 10.0%"




OpenVLA | Training

Other considerations during training :

e OpenVLA model is trained on a cluster of 64 A100 GPUs for 14 days
o Inference : 15GB of GPU memory when loaded bfloat16

—~ OpenVLA
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Experiments

Experiments validate 3 key aspects of OpenVLA:

1. Performance as a Generalist Policy
Zero-shot generalization tests

2. Effectiveness of Fine-tuning
New robot setups & tasks

3. Performance with Limited Hardware
Parameter-efficient FT, quantization
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1. Performance as a Generalist Policy
Zero-shot generalization tests

Experiment | Generalization

Settings : Robot and tasks from pre-trained data
WidowX robot from BridgeData V2 evaluation

Mobile manipulation robot from RT-1 and RT-2 evaluation

Categorizing the term “Generalization” :
Visual : unseen backgrounds, distractor objects, appearances of objects
Motion : unseen object positions/orientations

Physical : unseen object sizes/shapes

Semantic : unseen target objects, instructions, concepts from the Internet

WidowX robot
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1. Performance as a Generalist Policy

Experiment | Genera||zat|on Zero-shot generalization tests
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Experiment

Experiments validate 3 key aspects of OpenVLA:

1. Performance as a Generalist Policy
Zero-shot generalization tests
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3. Performance with Limited Hardware
Parameter-efficient FT, quantization
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2. Effectiveness of Fine-tuning

Experiments | Fl ne-Tu N | N g New robot setups & tasks

“Adapting a pretrained VLA model to a new robot, new environment, or new task”

e Quick adaptation to a new setup, with a much smaller dataset
e Implicitly captures per-setup differences
o Camera pose, embodiment, environment, reference frame, ...
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2. Effectiveness of Fine-tuning
New robot setups & tasks

Experiments | Fine-Tuning

“Is OpenVLA adaptable to new robot setups and tasks?”

e Prepared Franka robot arm setups not in pretraining data
e Models trained / fine-tuned on 7 tasks, 10-150 demonstrations each
o Diffusion policies, Octo, OpenVLA (scratch and pretrained)
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2. Effectiveness of Fine-tuning
New robot setups & tasks

Experiments | Fine-Tuning

1. Diffusion Policy — good for narrow, single-instruction tasks

Diffusion Policy: Octo: OpenVLA:
Put Carrot in Bowl Put Carrot in Bowl Put Carrot in Bowl
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2. Effectiveness of Fine-tuning
New robot setups & tasks

Experiments | Fine-Tuning

1. Diffusion Policy — good for narrow, single-instruction tasks
2. Fine-tuned VLAs — better with multiple objects & language conditioning

Diffusion Policy: Octo: OpenVLA:
Move Yellow Corn onto Plate Move Yellow Corn onto Plate Move Yellow Corn onto Plate
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2. Effectiveness of Fine-tuning
New robot setups & tasks

Experiments | Fine-Tuning

1. Diffusion Policy — good for narrow, single-instruction tasks
2. Fine-tuned VLAs — better with multiple objects & language conditioning
3. Robot data pretraining — significant performance boost

OpenVLA (Scratch): OpenVLA:
Flip Pot Upright Flip Pot Upright
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Experiments | Fine-Tuning

2. Effectiveness of Fine-tuning
New robot setups & tasks

|

o~

Diffusion Policy — good for narrow, single-instruction tasks

Fine-tuned VLAs — better with multiple objects & language conditioning
Robot data pretraining — significant performance boost

OpenVLA shows strong performance across task types

Franka-Tabletop Franka-DROID
2100 93.3 93.3
92 80 80.0 833 77.8
) 70.0 69.4 66.7 69.4
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ﬁ 40 371“5 333 350 383
o 26.7 20 278 ,,, 26.7 51 7
o 20 133 e 167 %
25 | -
Average Put Carrot Pour Corn Flip Pot Move <object> Knock <object> Cover <object> Wipe Table
|n Bowl into Pot Upright onto Plate Over W|th Towel
mmm Diffusion Policy ‘ a2 ? ;1 4 ‘ - \J Vol
Diffusion Policy (matched) | 3
mmm Octo

OpenVLA (scratch)
B OpenVLA (ours)
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Experiments

Experiments validate 3 key aspects of OpenVLA:

1. Performance as a Generalist Policy
Zero-shot generalization tests

2. Effectiveness of Fine-tuning
New robot setups & tasks

3. Performance with Limited Hardware
Parameter-efficient FT, quantization
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3. Performance with Limited Hardware ]

Experiments | Parameter-ef'ﬁC'ent FT [ Parameter-efficient FT, quantization

Tested different fine-tuning strategies

e Strategies: Full FT, Last layer only, Frozen vision, Sandwich, LoRA

e Criteria: memory requirement, performance
e Remark: LoRA is efficient, with minimal performance degradation!

Move <object> Put Carrot
onto Plate in Bowl

OpenVLA [Action De-Tokenizer ]—ﬁ
v t t t Ko
~ ® = { A6 1
Llama 2 7B AGrip ;
L 7 okt Strategy Success Rate  Train Params (x10°) VRAM (batch 16)
Input Image ction
ottt t ottt t ' Full FT 69.7+7.2 % 7,188.1 163.3 GB*
“Puaggplert C_TE | Llama Tokenizer Last layeronly 303 + 6.1 % 465.1 51.4GB
in bow" oPinov2 | GEIEEY T Frozen vision ~ 47.0 £ 6.9 % 6,760.4 156.2 GB*
Language Instruction = t 1 “What should the robot do to {task}? A" Sandwich 621 +79% 914.2 64.0 GB
- : CoRA, rank=32 68.2 + 7.5% 97.6 59.7GB |
rank=64 68.2 + 7.8% 195.2 60.5 GB
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3. Performance with Limited Hardware ]

Experiments | Parameter-ef'ﬁC'ent FT [ Parameter-efficient FT, quantization

LoRA: Low-Rank Adaptation of Large Language Models

e Vanilla fine-tuning: update (d x h) weights, expensive
e LoRA: only train B and A, where BA = AW (weight updates)

e Insight
o Pretrained W is near a good solution
o For fine-tuning, updating all weights is unnecessary!

@*%

Pretrained
Weights

= Rdxd
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Experiments | Quantization

[ 3. Performance with Limited Hardware

Parameter-efficient FT, quantization

|

Many foundation models require large GPU memory (even for inference)

e |dea: reduce the precision (# of bits used) of model weights

Less memory footprint
Extra quantization / dequantization overhead
Increased arithmetic error

e Memory < Performance tradeoff

LuANTIZATION
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3. Performance with Limited Hardware
Parameter-efficient FT, quantization

Experiments | Quantization

e Tested on BridgeData V2 tasks with different quantization levels

e Quantization overhead can reduce throughput
o 8-bit: throughput too low for a 5Hz control loop

e Quantization can lower GPU memory transfer (improve throughput)
o 4-bit: reduced memory transfer compensates overhead!

Gl ke 2 4]
-y oy

Vﬁ'ﬂ

N .I N H I o

1080Ti 2080T1 A5000 A100 RTX 4090 H100
Precision Bridge Success VRAM Figure 6: OpenVLA inference speed for various GPUs. Both
bfloat16 and int4 quantization achieve high throughput, especially
bfloatl6 ~ 71.3+4.8%  16.8 GB on GPUs with Ada Lovelace architecture (RTX 4090, H100). Fur-
int8 581+5.1% 10.2 GB ther speed-ups are possible with modern LLM inference frame-
int4 719 +4.7% 7.0 GB works like TensorRT-LLM [59]. #: Model sharded across two
GPUs to fit.
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OpenVLA | Limitation

e Only support single-image observation
e Inference throughput (Hz)
e Room for performance improvement (90+ %)
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OpenVLA | Summary

e Open-source VLA model for manipulators
o Image + language instruction — robot action

e CV & NLP advancements on robotic applications

e Towards large, ‘generalist’, widely-deployable robot models
o Robot data pretraining — general performance
o Fine-tuning (LoRA) — task-specific adaptation
o Quantization — memory-efficient inference

2
i
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Thank you
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Quiz

1. According to OpenVLA's fine-tuning experiments, the key benefit of LoRA
over full fine-tuning is the drastic improvement in performance (task

success rate).
a. True
b. False

2. Which is NOT true about OpenVLA?
a. OpenVLA can be fine-tuned on new robot tasks with 10-150 demonstrations.
b. OpenVLA strictly outperforms Diffusion Policy across all tasks.
c. OpenVLA supports low-memory deployment using quantization.
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