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1. Introduction & Motivations

1.1. Problem Definition

1.2. Objectives



| 1.1. Problem Definition

- Universal dexterous grasping in robotics is important but difficult due to
- high-DOFs

- various object geometries

- Several works...
- UniDexGrasp (CVPR, 2023)
- UniDexGrasp++ (ICCV, 2023)

Problems?

(D Complicated curriculum design Training time 1
@ lterative training with huge amount .




| 1.2. Objectives

Multi-task dexterous grasping policy with
enhanced efficiency & generalization




2. Related Work

2.1. Dexterous Grasping
2.2. Residual Policy Learning
2.3. Geometry-Unaware policy

2.4. Mixture of Experts



| 2.1. Dexterous Grasping

- Some approaches for generating target grasp poses
- Contact points
- Affordance maps
- Natural hand annotations

- Closed-loop policies managing the entire trajectory is also important!

- Imitation learning
- Dexmv: Imitation learning for dexterous manipulation from human videos (ECCV, 2022)

- Reinforcement learning (more scalable!)
- Learning complex dexterous manipulation with deep reinforcement learning and demonstrations
(RSS, 2018)
- Unidexgrasp: Universal robotic dexterous grasping via learning diverse proposal generation and

goal-conditioned policy (CVPR, 2023)
- Unidexgrasp++: Improving dexterous grasping policy learning via geometry-aware curriculum
and iterative generalist-specialist learning (ICCV, 2023)



| 2.2. Residual Policy Learning

- Residual policy learning
- base policy(suboptimal) + residual policy
- train a policy to output residual actions using RL
- when a base policy is provided.
- efficient for learning challenging RL tasks

- Applied examples

- Manipulation
- Residual learning from demonstration: Adapting dmps for contact-rich manipulation (RA-L, 2022)

- Control
- Residual reinforcement learning for robot control (ICRA, 2019)

- Sim-to-Real
- Efficient sim-to-real transfer of contact-rich manipulation skills with online admittance residual
learning (CoRL, 2023)

- Let’s use this concept to improve efficiency of training grasping policy!



| 2.3. Geometry-Unaware Policy

Dexterous functional grasping (ICRL, 2023)
- propose blind grasping policy
- rely on robot proprioception only
- can robustly grasp unseen objects placed close to the palm

Why this works?
- policy does not overfit to specific object information

Let’s use this concept for better generalization to a broad range of

objects.
- Apply this to the base policy in our residual RL!



| 2.4. Mixture of Experts

- Comprises a set of expert models + gaiting network
- learns to weight the output of each expert

- Applied examples
- NLP
- Mixtral of experts (arxiv, 2024)
- DeepSeekMoE, DeepSeek-V2 (arxiv, 2024)
- RL - image from DeepSeckMoE
- MCP: Learning composable hierarchical control with multiplicative
compositional policies (NIPS, 2019)

- Let’s use this concept to improve diversity of grasping poses!



3. Preliminaries

3.1. Problem Formulation

3.2. Teacher-Student Framework



| 3.1. Problem Formulation

Goal: enabling grasping for vw € Q (Q: large object set)
For each w, taks is formulated as POMDP (Partially Observable Markov Decision Process)

O: Observation space
S: State space
A: Action space

MY = (0,8,A,T,R,U) T:Transition dynamics: T (S¢+1|Se ar)
R:Reward function: R(s¢, az)
U: Observation emission function: U(o¢|s;)

At each t
AGENT ENVIRONMENT
@ observes o, € O @ Transition to next state
2 takes an action a; € A — Ser1~T (Se41]|Se ar)

3 receives an reward . = R(s¢, a;)

Agent’s objective — to maximize the expected return across all objects

T_l - - -
; T: time limit,
Elp v  di t fact
wea | & y:discount factor



| 3.1. Problem Formulation

- For task learning in simulation,

o €0 a € A
- Robot proprioception J € R123 - Target joint position(of the
. wrist position+orientation, joint hand)

positions of the hand, fingertip states,
forces on fingertip sensors

- 6D force(at the wrist)

- Object pose b?P, b1

: position bP € R3, quaternion b7 € R*

- Object code c¢” € R®*
. object geometry via a pre-trained
PointNet

Our aim: learn a vision-based policy m§ (at|J¢, Pe, ar—1) to maximize the
expected return across all objects (p: object point cloud in real-world setting)



| 3.1. Problem Formulation

reR

From the DexGraspNet, grasping proposal is given by g = (R, t, q), where
- R € SO(3): wrist’s relative rotation

- t € R3: position to the object

- g € R?%: hand’s joint positions

$

r, = rttask +q- rtproposal
roposal
p ot ==llg = gell

where
- a . hyperparameter,

- rfask : predefined reward

- rPToPos4: reward that penalizes the distance to grasping proposal

- g+ : current relative pose of the hand (to object)




| 3.1. Problem Formulation

reR

rfesk : predefined reward

T.task — rreach + T.llft 4 pmove 4 rbonus

@ rreach — —1,0 « ”Xobj — Xhand”2 - O-SZ”Xobj - Xfinger”2
: encourages the hand to reach object

@rliftz 0.1+0.1*az, lffl =2
0, otherwise

: encouragesthe hand to lift the object

3 ymove _ 09 = 2Xon = Xeargecll,  if f2=3
0, otherwise

: encourages the hand to move the object to the target position

1
—_—, if dopj < 0.05
@ ybonus — 1+10%dop; f obj =

0, otherwise
: gives an extra reward when the objectis close to the target position




| 3.2. Teacher-Student Framework

Why do we use teacher-student framework?

- Directly optimizing the vision-based policy using RL is challenging
- Gradient interference in multi-task RL
- High dimensionality of point cloud observations

- Teacher-student framework to address these issues
- UniDexGrasp: curriculum learning for state-based policy
- UniDexGrasp++: generalist-specialist learning for state-based policy

distill using DAgger

. [1]
State-based policy Vision-based policy

S P pd
Ty (ar e, b, by, ¢, as—1) ng(atllttpt' A1)

[1] A reduction of imitation learning and structured prediction to no-regret online learning (AISTATS, 2011)



4. Methods

4.1. Overall framework
4.2. Learning Geometry-Unaware Experts

4.3. Residual Multi-Task RL with MoE

4.4. Training Pipeline Summary



| 4.1. Overall framework

Base Policy 1

' R : : Robot i
P d — -, — . . S
\ proprioception 1 _.®._
[ t
'®P | | ;
ol 6D obi H 3 ‘ Base Policy k
| ject __,| Hyper- |
pose Policy &
Robot \
proprioception Base Object visual R ,E‘B_,' a
=i Polic -  a representation e t
3D object ey
position
1. Learning Geometry-unaware Experts 2. Residual Multi-Task RL with MoE

1. Base policy (Geometry-unaware Experts)
- generalize range of objects
2. Residual policy + Weights (for each Experts)

- facilitate multi-task learning



| 4.2. Learning Geometry-Unaware Experts

- Intention: Using blind grasping policy for better generalization
- Method: geometry-agnostic base policy

- Input state: robot proprioception J + 3D position of the object
B p
T (a¢Jt, b; , at—1)

- Reward function: Use hand joint angles only

proposal

T = —|lg — g:ll ose
gt = (Ry, tt,q) :D T — _Hq _ qt”

reward function in DexGraspNet




| 4.3. Residual Multi-Task RL with MoE (1)

Intention: Only using base Policy can’t achieve overall success
Method: state-based residual policy

Previously, base policy af = argmax,, Wg (at|Jt, bf,a,t_l)

Additional Input State: Quaternion and Object code

af ~ 77(? (atIJt,bf,b?,cw,at_l) bl c Rzl

64
a; = aP + alt c’ eR



| 4.3. Residual Multi-Task RL with MoE (2)

- Intention: Mixture of Base Policy and Residual Policy
- Method: hyper-policy (residual policy + weight)

7T¢ (a’t 7At|Jt7b t)cwaat—l)

1 k
R B
tl
1=1
-— . I Robot Base Policy 1
.~ !l , :
\ | proprioception a2
[
®» | —&—
1 i Base Policy k
! 6D object __,| Hyper- | P
pose Policy
I Robot
== proprioception B Object visual v
ase R
= Poli —  a; representation af —~P—~ a
3D object olicy
position

1. Learning Geometry-Agnostic Experts 2. Residual Multi-Task RL with MoE



| 4.4. Training Pipeline Summary

- K-Means clustering on the PointNet and generate k clustered dataset

- Training Base Policies
- Use most centered object as dataset for each cluster
- Train base policy for each clusters

- Training Hyper-Policy
- First stage: follow pose provided by dataset T

- Second stage: focus terms of task completion Ttask

task 1 ,rp'roposal

- Vision-based Distillation
- teacher-student framework using DAgger



5. Results

5.1. Experiment Setting
5.2. Performance of state-based policy
5.3. Performance of vision-based policy

5.4. Ablation Studies



| 5.1. Experiment Setting

Dataset

e DexGraspNet dataset (3,200 object instances)

Simulation Experiment

e Isaac Gym

Policy Learning

e state-based policy use PPO Algorithm
e vision-based policy use DAgger Algorithm

Detail

e Base policy: 5000 iteration in 4,096 parallel environment
e Hyper policy: 20000 for each training step in 11000 parallel environments
e \Vision-based policy: 8000 iteration in 11000 parallel environments



| 5.2. Performance of state-based policy

- Success rates of state-based policies
- Comparing methods: Much higher performance
- Comparing success rate of train and test: Solved overfitting

Test(%)
Method Train(%) | Uns. Obj. Uns. Cat.
Seen Cat.
UniDexGrasp 79.4 74.3 70.8
UniDexGrasp++ 87.9 84.3 83.1
ResDex (stage-1) | 90.6+£0.6 | 89.740.8  90.9£0.1
ResDex (stage-2) | 94.6+1.6 | 94.4+1.7 95.44+1.0

Table 1: Success rates of state-based policies. We evaluate our method on three different random
seeds. The hyper-policy is trained with four geometry-agnostic base policies. We present the success
rates after each multi-task training stage.



| 5.3. Performance of vision-based policy

- Success rates of vision-based policies
- Vision-based policy achieved better performance
- Blind grasping policy is meaningfully in vision condition

Test(%)
Methods Train(%) | Uns. Obj. Uns. Cat.
Seen Cat.
UniDexGrasp 13.7 68.6 65.1
UniDexGrasp++ 85.4 79.6 76.7
ResDex 88.8 88.5 87.2

Table 2: Success rates of vision-based policies.



| 5.4. Ablation Studies (Base Policy - 1)

- Base policy introduce two difference with UniDexGrasp
- Blind grasping policy (limited input)
- Limited proposal reward (use hand joint angles only)

- Test for three case

[ Ours: Blind grasping policy + Limited Proposal reward
I Full Obs: Fully observed state + Limited Proposal reward

| Full Pose: Fully observed state + Full proposal reward



| 5.4. Ablation Studies (Base Policy - 2)

Can check high generalization for any object

Ours: Blind grasping policy + Limited Proposal reward
B Full Obs: Fully observed state + Limited Proposal reward

Full Pose: Fully observed state + Full proposal reward
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Figure 2: Generalization performance to all objects using policies with different observations
and reward, each trained on a single object. Ours: Geometry-Agnostic policy. Full Obs: Policy
trained with the complete state-based observations. Full Pose: Policy trained using the reward
function that includes the full grasping proposal reward.



| 5.4. Ablation Studies (Hyper Policy - 1)

- Two main questions
- necessity of Residual Policy

- Number of Clusters to divide

Method k=1 k=2 k=3| k=4 |k=5 k=56

MoE 614  71.1 79.4 80.3 72.1 81.6
MoE+Res  83.2 82.8 88.1 90.6 87.6 88.7

Table 3: Ablation study on residual reinforcement learning. We assess success rates of policies
on the training set. Method indicates the number of base policies used. MoE shows the results for
hyper-policies without residual actions, while MoE+Res shows the results for policies that output
both normalized weights for MoE and residual actions.

Methods £=1 k=2 k=3 k=4 k=5 k=6 D= T proposal
D | 223.6 1745 1943 1763 204.6 176.1 '

Table 4: Quality of grasping poses achieved by different policies. We evaluate the D values of
ResDex policies with various k£ on the test set of unseen objects in unseen categories. The lower D

means the better grasping poses achieved.



| 5.4. Ablation Studies (Hyper Policy - 2)

- Purpose of clustering is to grasp better in different way for each objects

Figure 3: Grasping poses achieved by hyper-policies trained with various numbers of base
policies. Each row displays grasping poses for a kettle, tape measure, mug, and headphone, respec-

tively. Columns show hyper-policies trained with 1, 2, 3, and 4 base policies, arranged from left to
right.



| 6. Conclusion & Limitation

Improvements Limitation
- No functional grasping

- Residual Policy Learning Framework
- No experiment on hardware

- Efficiently trainable model
- Geometry-Agnostic Base Policy

- High generalization Conclusion

- Mixture-of-Experts (MoE) - Perform better than previous works
- zero generalization gap

- High diversity and good performance




Thank you




| Appendix (Training Details)

Network Architecture We use a MLP architecture which consists of 4 layers (1024, 1024, 512,
512) for base policies and the hyper policy. For the vision-based policy, we use a simplified PointNet
(Q1 et al., 2017) encoder to represent the object point cloud and apply MLPs with the same hidden
layer sizes for the actor and the critic. We use ELU (Clevert, 2015) as the activation function.

Training Device and Training Time All the state-based policies are trained on on a single NVIDIA
RTX 4090 GPU. Training a base policy takes about 20 minutes, while training a hyper-policy takes
about 11 hours. For the vision-based policy, we train on a single A800 GPU, taking about 16 hours.

Analysis of Training Efficiency To demonstrate the training efficiency of our method compared
with UniDexGrasp and UniDexGrasp++, we provide a comparative analysis based on the number
of training rounds, as detailed in their papers. UniDexGrasp implements a progressive training
strategy — starting with a single object, expanding to several objects within the same category,
and finally covering the full training set — requiring three multi-task training stages in practice.
UniDexGrasp++ is more complex, involving the training of 20 multi-task policies along with several
distillation stages. In contrast, our method only necessitates the training of a single multi-task policy
in one trial, using between one to six low-cost, single-task base policies. Our approach is not only
simpler but also efficient. As demonstrated in our experiments, our method achieves high success
rates even with just one base policy. Table 7 compares the training efficiency of different methods
in terms of the number of training rounds.



