Mid-term Project Presentation: Improvement on Bimanual Grasp Pose Synthesis

Team 3

Seungwan Kang, Hajun Park

Contents

1. Introduction & Motivation: Bimanual Dexterous Grasping

2. Overview of Related Works

3. Problems & How to Improve

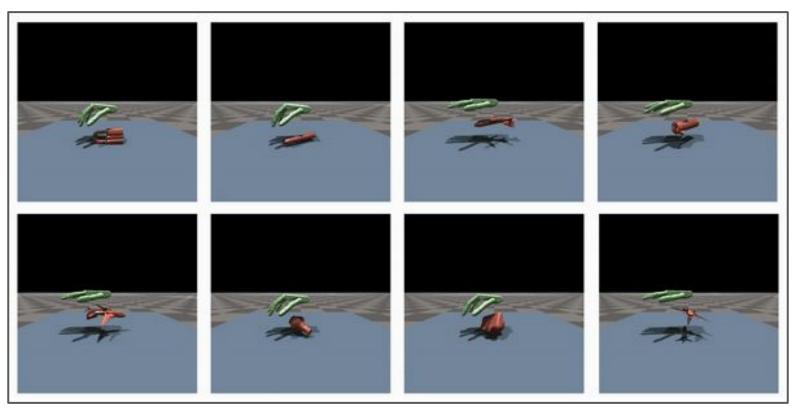
4. Our Progress

Introduction & Motivation Bimanual Dexterous Grasping

1.1. Introduction to Dexterous Grasping

1.2. Unimanual to Bimanual

1.1. Introduction to Dexterous Grasping


Emergence of dexterous hands alongside the evolution of humanoid robots

- Image from Unitree, Dex5

1.1. Introduction to Dexterous Grasping

Significant progress has been made in one-hand dexterous grasping

- Image from UniDexGrasp++ (W. Wan, et al)

1.2. Unimanual to Bimanual

A consideration in unimanual grasping

- Always graspable object in size and weight....
- How about bigger and heavier object?

- Image from alamy

1.2. Unimanual to Bimanual

Why do we have to consider Two Hands?

① Objects in the real world vary in size and weight.

(2) Humans and humanoid robots are equipped with two hands - we should leverage this capability.

③ Using both hands can also improve abilities(speed, efficiency) and reliability in performing sequential tasks.

Prehensile Manipulation (grasping)

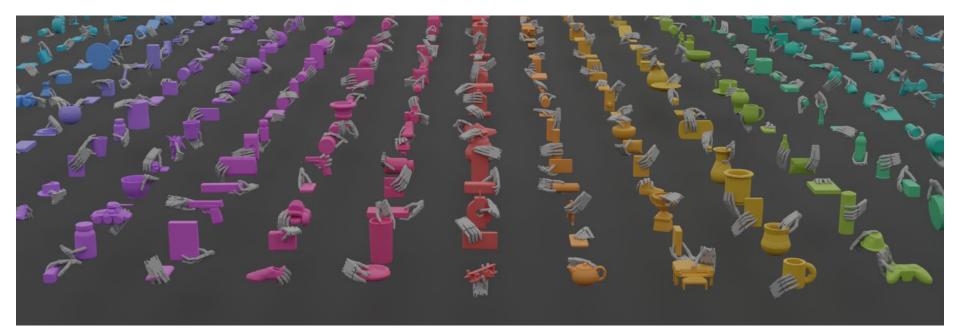
Non-Prehensile Manipulation (in-hand, pushing, ...)

1.2. Unimanual to Bimanual

Why should we develop different strategies for bimanual grasping?

Method	ho=5000	ho=2500	ho=500
Both Hands (Optimization)	41.02%	54.03%	71.42%
Uni2Bim (opt)	32.87%	45.26%	56.69%
Left Hand Only	23.38%	41.48%	68.42%
Right Hand Only	21.85%	41.95%	68.48%
Both Hands (Diffusion)	42.39%	$\mathbf{54.06\%}$	69.87%

- Unimanual grasp policy and synthesis method does not consider the interaction & cooperation between two hands.
- We need integrated policy and dedicated large-scale datasets for the bimanual grasping!


2. Overview of Related Works

2.1. Unimanual Dexterous Grasping

2.2. Bimanual Dexterous Grasping

2.1. Unimanual Paper (1)

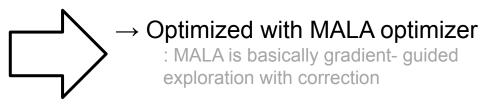
DexGraspNet: A Large-Scale Robotic Dexterous Grasp Dataset for General Objects Based on Simulation (ICRA 2023)

TABLE I:	Dexterous	Grasp	Dataset	Comparison
----------	-----------	-------	---------	------------

				L			
Dataset	Hand	Observations	Sim./Real	Grasps	Obj.(Cat.)	Grasps per Obj.	Method
ObMan [14]	MANO		Sim.	27k	2772(8)	10	GraspIt!
HO3D [15]	MANO	RGBD	Real	77k	10	>7k	Estimation
DexYCB [16]	MANO	RGBD	Real	582K	20	>29k	Human annotation
ContactDB [17]	MANO	RGBD+thermal	Real	3750	50	75	Capture
ContactPose [18]	MANO	RGBD	Real	2306	25	92	Capture
DDGdata [9]	ShadowHand	70	Sim.	6.9k	565	>100	GraspIt!
DexGraspNet (Ours)	ShadowHand	-	Sim.	1.32M	5355(133)	>200	Optimization
		-			•	-	•

2.1. Unimanual Paper (1)

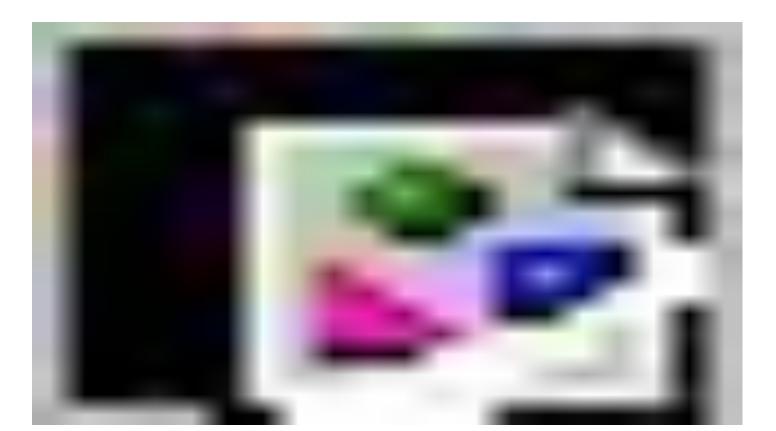
DexGraspNet: A Large-Scale Robotic Dexterous Grasp Dataset for General Objects Based on Simulation (ICRA 2023)


Method: Differentiable Force Closure [2]

 \rightarrow Optimization with differentiable force closure estimator as an energy term

Energy terms

- E_fc: force closure estimation
- E_dis: ensure contact
- E_pen: prevent penetration
- E_spen: penalize self-penetration
- E_joints: penalize out-of-limit joint angles


 $E_{fc} + w_{dis}E_{dis} + w_{pen}E_{pen} + w_{spen}E_{spen} + w_{joints}E_{joiints}$

[2] Synthesizing diverse and physically stable grasps with arbitrary hand structures using differentiable force closure estimator (RA-L, 2021)

2.1. Unimanual Paper (2,review) DexGrasp Anything

- Generate pose using DDPM based diffusion model
- Achieved SOTA performance in unimanual grasping

2.2. Bimanual Paper (base paper)

Bimanual Grasp Synthesis for Dexterous Robot Hands (ICRA 25)

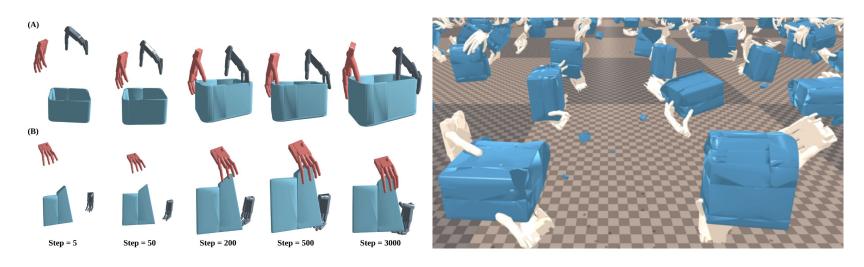
Goal

- Generate bimanual grasping pose

which can also grasp big and heavy objects

Problems

- No previous work and dataset
- Much higher DoF: (22+6) × 2 = 56 dim


Solution: BimanGrasp-DDPM Algorithm

2.2. Bimanual Paper (base paper)

Bimanual Grasp Synthesis for Dexterous Robot Hands (ICRA 25)

BimanGrasp Algorithm

Generate Dataset considering Energy term of
Hand-Object Distance, Force Closure and Penetration

DDPM Algorithm

- Generate pose using diffusion model and execute few optimization to avoid penetration

2.2. Bimanual Paper (base paper)

Bimanual Grasp Synthesis for Dexterous Robot Hands (ICRA 25)

Result

\mathbf{Method}	ho=5000	ho=2500	ho=500		
Both Hands (Optimization)	41.02%	54.03%	71.42%		
Uni2Bim (opt)	32.87%	45.26%	56.69%	(D)	(E)
Left Hand Only	23.38%	41.48%	68.42%	ALL.	A
Right Hand Only	21.85%	41.95%	68.48%		
Both Hands (Diffusion)	$\boldsymbol{42.39\%}$	$\mathbf{54.06\%}$	69.87%		

Limitation

- Low performance as it is first trial paper
- Penetration is not considered in DDPM model

3. Problems & How to Improve

3.1. Optimization-Based: Problems

3.2. Optimization-Based: Initialize with candidate force closure area pair

3.3. Diffusion-Based: Weight maximum density

3.1. Optimization-Based: Problems

Recap: Energy terms in Bimanual Grasp Synthesis for Dexterous Robot Hands (ICRA 25)

Method	ho=5000	ho=2500	ho=500
Both Hands (Optimization)	41.02%	54.03%	$\mathbf{71.42\%}$
Uni2Bim (opt)	32.87%	45.26%	56.69%
Left Hand Only	23.38%	41.48%	68.42%
Right Hand Only	21.85%	41.95%	68.48%
Both Hands (Diffusion)	42.39%	$\mathbf{54.06\%}$	69.87%

3.1. Optimization-Based: Problems

Recap: Energy terms in Bimanual Grasp Synthesis for Dexterous Robot Hands (ICRA 25)

TABLE I: Energy function for grasp search problem. The minimization objective of the algorithm is the weighted sum of all terms.

Term	Formulation
$E_{\rm dis}$: Hand-object distance	$\sum_{a=1}^{n} d(x_a, O)$
E_{fc} : Force Closure	$ Gc _2$
$E_{\rm VeW}$: Wrench Ellipse Volume	$\left(\det\left(\mathbf{G}\mathbf{G}^{T}\right)\right)^{-rac{1}{2}}$
$E_{\rm objpen}$: Hand-Object Penetration	$\sum_{l \in \{1,2\}} \sum_{p_l \in P(H_l)} \max(\delta - d(p_l, O), 0)$
$E_{selfpen}$: Hand Self-Penetration	$\sum_{l \in \{1,2\}} \sum_{p,q \in P(H_l)} \max(\delta - d(p,q), 0)$
$E_{\rm bimpen}$: Inter-Hands Penetration	$\sum_{p \in P(H_1), q \in P(H_2)} \max(\delta - d(p, q), 0)$
E_{joint} : Violation of Joint Limits	$\sum_{i=1}^{44} (\max(\theta_i - \theta_i^{max}, 0) + \max(\theta^{min} - \theta_i, 0))$

3.1. Optimization-Based: Problems

Recap: Energy terms in Bimanual Grasp Synthesis for Dexterous Robot Hands (ICRA 25)

Ebimpen: Inter-Hands Penetration

$$\sum_{p \in P(H_1), q \in P(H_2)} \max(\delta - d(p, q), 0)$$

Problems of E_bimpen

- Adding only inter-hands penetration energy term may not be sufficient to reflect interaction b/w two hands
- May overlap with or weaken other penetration terms

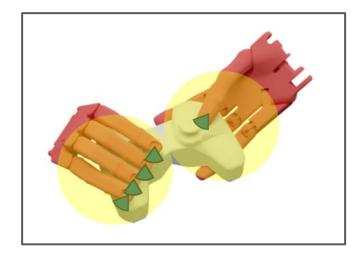
Problems of utilizing similar method with DexGraspNet

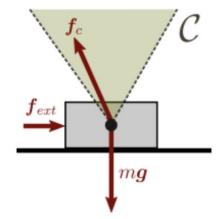
- It might not works well for exploiting two hands
- Low performance in small size objects
- Originally, DexGraspNet(dataset for unimanual) have its flaw on that it always gets contact-rich and power-grasp
 - it means that it does not explicit its dexterity
 - so, may struggle in generating functional grasps

3.2. Optimization-Based:

Initialize with candidate force closure area pair

Problem


- Initial state doesn't consider geometric information
- Only 33% can pass criteria for dataset (2 second grasping)


Ideation

- Select candidate pair that can make grasp stable

Planning Trial

- Make integration of **Friction Cone** in two area cover whole direction

- figure of friction cone

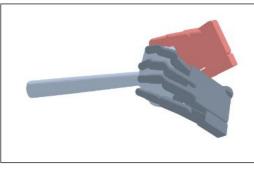
3.3. Diffusion-Based:

Weight maximum density

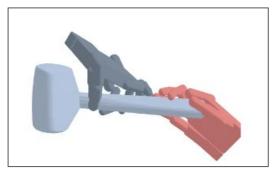
Problem

- Generated Poses are successful in fixed density
- All data are weighted same

Ideation


- Add row about stability of each dataset
- Weight each stability while training DDPM

Planning Trial


- Add CFG term in DDPM

give maximum success density as guidance

Example

weight: 7500 $kg \cdot m^{-3}$

4. Our Progress

4.1. Progress on Code

4.1. Our Progress

What we need to develop and test our idea...

- Codes
 - grasp generator
 - grasp validation
 - energy calculation, point sampling, optimizer, ...
- Files
 - 3D objects meshes
 - Hand meshes

We are currently working based on DexGraspNet code: https://github.com/PKU-EPIC/DexGraspNet.git

You can find our progress and development at: https://github.com/dareumHJ/cs586.git

Thank you

Q&A