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Introduction

® Probabilistic Generative Models cannot guarantee safety.
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Introduction

® Probabilistic Generative Models cannot guarantee safety.
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Baseline: Diffuser

® Diffuser [1] is the first generative

denoising

Figure 1. Diffuser is a diffusion probabilistic model that plans by
iteratively refining trajectories.
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Baseline: SafeDiffuser

® SafeDiffuser [2] incorporate with control barrier functions to guarantee safety:.

pan Y

Safeliffuser: Safe Manning with Diffusion Probabilistic Models

KAIST

o N Plasming. bt theite s B ality paaras:

daiars Rty it . (CCND I.q g 1: o peogeossdl ol st |LosaT ) (Omisds sl Tipsnars sk Jus s,
whown promuiw i eemeciory S bkt Sefr fupp | fals deom e B

plarsarg for & vanery of sehotic Wik DT bt Secbl Bebowr vy sehasi that mabes @ sell gemorakaed
i P L il el B
Irarang anierense, the dhifuer, omditamed o thee ot slate s opnitivg s, dadts feorm D o 6

provtsle <leas planreng frapclones Based on whech we can ol a ooslnd poboy. Aol sgplvieg thes Lot
oy oot st Bormard, e gt e it e s ther e g peacrdkay aain ke it & e plistag URsRRE
Thens puvmras in defwatind wnl thet ibgenmon o acharord Ny, oo bag cBalbiiggr o8 thon ivsctband is that theiie
i ety pesianioes ol st e plasssng 1 mmde—hwuhwnm

mry (3 abown i Pig 10 This ok i Sormandds & d fin i AifTusion madeh i enmsne the
ali g 4 plasi i -lqdrlr.- 1l wach as iy podicy brameng snd
optameraton.

[T (A S

N ki e b bt o ey B b

e . Dynamics SafeDiffuser step N

ap: (Gaussian)
Invariance pal(t! |T/*Y) .. o
A .
-~ , .
Step j+1 i+l I
ol - ...
L -
- - o
. g5 ®
Step j

_______ I EEfE F'|Eﬂn|n,g

[ The SafeDiffuser Workflow ]



Limitations: Diffuser

® Diffusion-based planner like Diffuser needs a lot of denoising steps, leading to high
computation load and slow generation (planning).

Many denoising steps

Slow

Figure 1. Diffuser is a diffusion probabilistic model that plans by
iteratively refining trajectories.
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Limitations: SafeDiffuser

® SafeDiffuser proposed three different architecture to enforce safety constraints using CBF.

® However, it needs to be improved to avoid local traps and ensure safety.

Waypoints in local trap

Robust-safe Diffuser Relaxed-safe Diffuser Time-varing-sate Diffuser

[ Results of SafeDiffuser ]
KAIST




Limitations: SafeDiffuser

® They enforce safety constraints, but still some states are stuck in local trap.

METHOD S-SPEC(T  C-SPEC(T  SCORE (1) TIME NLL TRAP TRAP
& >0) & >0) RATE 1 (]) RATE2(])
DIFFUSER JANNER ET AL. (2022) -0.983 -0.894 1.598+0.174 0.006 4.501+0.475
TRUNC. BROCKMAN ET AL. (2016) -1.192¢77 -0.759 1.577+0.242 0.024 4.494+0.465
CG DHARIWAL & NICHOL (2021) -0.789 -0.979 0.384+0.020 0.053 6.962+0.350
CG—€ DHARIWAL & NICHOL (2021) -0.853 -0.995 0.383+0.017 0.061 6.975+0.343
INVODE XIAO ET AL. (2023B) 14.000 1.657¢>  -0.02540.000 0.018 -
ROS-DIFFUSER (OURS) 0.010 0.010 1.519+0.330 0.106 4.584+0.646 § 100%
ROS-DIFFUSER-CF (OURS) 0.010 0.010 1.536+0.306 0.007 4.481+0.298 § 100%
RES-DIFFUSER (OURS) 0.010 0.010 1.55740.289 0.107 4.434+0.561 46%
RES-DIFFUSER-CF (OURS) 0.010 0.010 1.5444+0.280 0.007 4.619+0.652§ 36%
TVS-DIFFUSER (OURS) 0.003 0.003 1.543+0.303 0.107 4.533+0.494 8 47%
TVS-DIFFUSER-CF (OURS) 0.003 0.003 1.5884+0.231 0.007 4.462+0.431§ 48%
RES-DIFFUSER-L10 (OURS) 0.010 0.010 1.52740.291 0.011 4.571+0.693 §_39%
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Goal: Safe and Fast Planner

\_

/Limitations

Diffuser [1]

Slow

CBF from SafeDiffuser [2]

Unsafe
(still frequent local traps)

ﬁ

ﬁ

KAIST

\ /Proposed Method

Flow Matching [3] in Generative Model Field

FlowMatcher

Fast \

Finite-time CBF

~

Fast and Safe Planner

/ SafeFlowMatcher
Safe

/ Qnite-time Stability Theory [4] in Control Field

/
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Flow Matching Recap from Student Lecture

® Flow Matching requires fewer sampling steps to generate an image or trajectory.

® Since neural network inference is required at each step, fewer steps can help reduce the
total generation (or planning) time.

Diffusion Flow Matching
Process Step-by-step noise addition and denoisin Continuous transformation via
pby=step & Velocity fields
Mathematical Stochastic process Deterministic ODE
Base
Sampling Many steps Few steps
Best for High-fidelity, complex generation Fast, controllable planning

KAIST

[ Comparison between Diffusion and Flow Matching |
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FlowMatcher

® We implemented a flow-matching-based planner called FlowMatcher, built on
conditional flow matching theory and inspired by Ditfuser [1].

® FlowMatcher can generate paths FAST.

KAIS Diffuser FlowMatcher

12



Brief Introduction to Finite-time CBF

® From finite-time stability theory, we can derive Finite-time CBF (FT-CBF).

® We will explore CBF and finite-time CBF in more detail later in the paper presentation.

Definition 1 (Finite-Time CBF) Given the affine system x; = f(x;) + g(x:)u; and the safe set
C £ {x; € R" | b(x;) > 0}, C! function b is called a finite-time convergence CBF if there exist
parameters p € [0, 1) and € > 0 such that for all x; € D,
sup [Lb(x:) + Lgb(x:)us + € - sign(b(x¢))|b(x¢)|?] > 0, (5)
ueld
where L ;b(x;) £ Vb(x;) " f(x;) and Lyb(x;) = Vb(x;) " g(x;) denote the Lie derivatives of b along
f and g, respectively.

Lemma 1 (Forward Invariance of the Safe Set) Define CBF b as in Definition 1, such that the
initial state satisfies b(xg) > 0. Any Lipschitz continuous controller u, that satisfies condition (5)
ensures forward invariance of the safe set C, i.e., b(xt) > 0forallt > 0.

Focus on the key concecpt of CBF here.

KAIST
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Brief Introduction to Finite-time CBF

® Unlike nominal CBFE, finite-time convergence CBF guarantees that the states converge to

a safe set within a finite time.

® Since FlowMatcher generates trajectories over a time horizon t € [0,1], it is important
that the states converge to the safe set by t = 1.

Unsafe Region

Safe Region

KAIST

FlowMatcher direction
FT-CBF steering direction
== SafeFlowMatcher direction



SafeFlowMatcher

® SafeFlowMatcher Dynamics:

Trajectory State _l j Velocity Field from FlowMatcher

d
R ve(T4;0) + Auy = uy,

dt
L Perturbation from FT-CBF

® Thus, u; is new control input to generate safe trajectories.

KAIST
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SafeFlowMatcher

® We can derive the optimal control input u; using convex optimization (QP).

uf*, rf* = argmin [[uf — v, (7F;0)|| + ||rF|| subjectto (9).
uf,rk

d(k) uy + e - sign(b(rf) — 6)|b(f) — 6° + wiry > 0,Vk € H,Vt € [0,1].

® The optimal control input is minimally modified input from FlowMatcher.

® The slack variable relax the constraint in the initial phase.

KAIST

)

16



SafeFlowMatcher

® We built some Theorem and Proposition for SafeFlowMatcher.

KAIST

th

— =v(14;0) + Aug £ vy,  (8)

dt

Definition 2 (Finite-Time Flow Invariance) Let C' CBF b be such that b(‘rtk) > 0. The system (8)
is finite-time flow invariant if there exists t; € [0, 1] such that b(t}F) > 0 forall k € H, Vt > t;.

Theorem 1 (Forward Invariance for SafeFlowMatcher) Letb: R — R be a C* function, and
define the robust safety set Cs = {TF|b(TF) > 8} for some § > 0. Suppose the system (8) is
controlled by u(t) satisfying the following barrier certificate for 0 < p < 1, € > 0:

k
dZ(TE )uff + € - sign(b(7) — 8)|b(y) — 8|” + wyrf > 0,Vk € H,Vt € [0, 1]. 9)
T

Here, w* :[0,1] — R2° is a monotonically decreasing function with w, = 0 for s € [ty, 1], and

r¥ is a slack variable. The function w* and parameters t,, € (0,1], r¥ are user-defined. Then

SafeFlowMatcher achieves finite-time flow invariance on Cs.

17



SafeFlowMatcher 1

® We built some Theorem and Proposition for SafeFlowMatcher.

Proposition 1 (Finite Convergence Time for SafeFlowMatcher) Suppose Theorem 1 holds.
Then for any initial trajectory Tf; € D\ Cs, the state trajectory TF converges to the safe set Cs
within finite time

(6 — b(ry))' ~”

TStO_I_ )
(1 —-p)

(10)

and remains in the set thereafter.

® The Key point is that if we select proper hyperparameters, we can guarantee the finite-
time convergence to the safe set.
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SafeFlowMatcher

® SafeFlowMatcher
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As a result, a safe trajectory is generated.

Sa

SateFlowMatcher generates a trajectory from Gaussian noise distribution.
In the initial phase, the effect of the CBF is soft.

In the final phase, the CBF enforces constraints more strongly.
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Additional Technique: Adaptive Time Scheduling

® We proved that the following adaptive time scheduling can reduce global integration
error when generating trajectories in flow matching using the Euler integrator.

Theorem 2 (Adaptive Scheduling for Forward Integration) Suppose v;(-;0) is Lipschitz contin-
uous. If target distribution q(T,) is on a compact set KK C R? with diameter R < oo, and a trajectory
state TF € D and a set of trajectory states D with diameter M < oo, then the minimum error of
integration for (8) is achieved by selecting timesteps At; according to

o (1—t¢;)3
" 2R(M +tR) + (1 —t;)%

At (14)

Since we defined At; £ tiy1 — t;, Theorem 2 can be used to recursively generate ¢, from ¢;
over each 7. Theorem 2 tells us the step size At; during forward integration can be chosen to
be O((1 — t;)3) to reduce the global error of integration, thereby improving the accuracy of the
generated trajectory. The proof of Theorem 2 is provided in Appendix B.

® Please refer to Appendix B for the proof of Theorem 2.

KAIST
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Additional Technique: Adaptive Time Scheduling -

® Instead of using uniform timestep, using adaptive timestep 0((1 — t)?) in the maze
environment leads to accurate generation.

Time Grid from At « (1 -t)"~3 At i« (1-t)"~3 (Normalized)
1.0r
0.175F
oslh 0.150}
0.125¢
.— 0.6
! — 0.100F
(1] 4_,I
£ g
Foal 0.075}
0.050F
0.2¢
0.025F
0.0f 0.000F
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Step Index (i) Step Index (i)

® We are planning to show experimental results in the final presentation.
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Experiments: SafeDiffuser vs. SafeFlowMatcher

® We presented an initial prototype of SateFlowMatcher and provided a preliminary

comparison with SafeDiffuser [2].
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Future Plan

® We plan to extend our experiments to legged locomotion and manipulation tasks,
comparing various metrics such as efficiency, safety, and other relevant factors.

. &
W ® .
.. ‘
| .
Walker2D Manipulation

KAIST
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Jiwon Park Jeongyong Yang
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Appendix A: Proof of Theorem 1 and Proposition1 ~

Suppose the Lyapunov candidate function V (x;) £ max(§ — b(x;),0).

Case 1: If x;, € Cs (i.e., b(x¢,) > d), then V(x;) = 0, and from the CBF inequality (9):
V(x:) = —b(x;) < e(b(x;) — )P = 0.

So V(x¢(t)) = 0 for all ¢, which implies b(x;(t)) > J; the system stays in Cs.

Case 2: If x;, ¢ Cs (i.e., b(Xs,) < 0), then V(x;) = & — b(x¢) > 0. The following finite-stability
condition holds

V(%) = —b(x;) < —€(8 — (%)) = —€V (x¢)”.
Define the comparison system
(t) = —ed(t)", d(to) = V (xs,).
By the Comparison Lemma [26] (See Lemma 3.4), we have:
Vi(xs) < @(t), Vt > to.
The solution ¢(t) is

1

P(t) = (V(x4,) " — (1 — p)e(t —to)) =7, fort > to.

KAIST




Appendix A: Proof of Theorem 1 and Proposition1 -

Thus, X
V(x:) < (V(%4)' ™7 = (1= p)e(t —to)) 7 .

Hence, the state reaches the robust safe set Cs in finite time 7 that satisfy V (x7) < ¢(T') = 0. And
we get the finite convergence time,

V(Xfo)l_P . (5 — b(xfo)l_p
(- T -

Therefore, for all t > T', we have V (x;) < 0, implying x € Cs. This completes the proof of both
Theorem 1 and Proposition 1.

T =t

_|_
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Appendix B: Proof of Theorem 2

KAIST

Global Error Bound for Adaptive Euler Integration: We consider the initial value problem

dx

— =v(x,t), x(0)=xp,

= =), x(0)=%o

and discretize time as 0 = tp < t; < --- < tp = 1, with step sizes Aty = tpy1 — tr. The Euler
integration scheme is given by

Xpt+1 = Xg + Atev(Xg, tr).

A Taylor expansion of the exact solution x(t) about ¢, yields

1 d?
X(tes1) = x(tk) + Atpv(x(te), tr) + 5Atﬁ£(gk),

for some & € [tg, trr1]-

Define the local error e, as

er = [[x(tk+1) — (x(tx) + Atgv(x(tr), k)|l -
From the Taylor expansion, it follows that

1, ,d’x 9
k< HEA%E(&“) < MAty,

where M is a constant.

Now, define the global error E, as
By = |Ix(tk) — xkl.

29



Appendix B: Proof of Theorem 2

We compute Ej; as follows:
Epy1 = [|[x(trt1) — Xe41
= [[x(tk+1) — (xk + Atgv(xg, tx))||

= [[(x(tr+1) — x(tk) — Atgv(x(tr), tr)) + Atg(v(x(tk), tr) — v(Xk, tr)) + (X(t) — xi)|
<er+ AtkH’U(X(tk),tk) — U(Xk,tk)” + Fip..

Assuming that v(x, t) is Lipschitz continuous in x with Lipschitz constant L(tx), i.e.,

[v(x(tk), te) — v(xk, tie) || < L(te)[[x(tk) — %kl = L(tk) Bk,

we obtain
By <ep+ (1 + AtkL(tk))Ek
Substituting the bound for the local error ey,

Eriq < MAt% + (1 + AtkL(tk))Ek

KAIST
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Appendix B: Proof of Theorem 2

KAIST

Applying the discrete Gronwall inequality [27] yields the following bound for the global error at
step 1.

T— T-1
Z H 1 + L(tk)Atk).
7=0 k: j+1

Thus, the global error accumulates according to both the local errors and the amplification factors
induced by the Lipschitz constants of v.

To control the global error, it is therefore beneficial to adapt the time step At based on the local
Lipschitz constant. Specifically, choosing

1
L(tk)

balances the error contribution at each step. In general, the Lipschitz constant is bounded by the
operator (induced) norm of the Jacobian of v with respect to x:

L(t) = sup |[Vxcv(x(tx), ti )l

Atk X
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Appendix B: Proof of Theorem 2

KAIST

Lipschitz Constant of Jacobian of Velocity Field: Recall that under the flow matching formula-

tion [5], the velocity field v;(x) £ v(x(t),t)) is defined as follows:

ve(x) = /vt(XIil)put(ilIX) dx1,

where the conditional vector field v;(x|%1) takes the form
}"{1 — X

ve(x|X1) = T

Thus, the velocity field simplifies to

E[xi|x] —x
1—1
The Lipschitz constant of the velocity field v; is defined as

L(t) = sup | Vxr ().

vy (x) =

Differentiating v;(x) with respect to x, we obtain

VxE[x1|x] =T
Vx'l)t (X) - [1 l_‘t] )
where [ is the identity matrix. Applying the triangle inequality, we get
IVER [x]]| +1
Vx < .
V()] < 22
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Appendix B: Proof of Theorem 2
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Suppose the data distribution g(x;) is supported on a compact set  C R¢, and let the diameter of

KC be R < co. Then, by Bayes’ rule, we have

q(x1]x) =

where
o e —

The posterior expectation is

p(x) £ Efx:|x] =

pe(x|x1)g(x1)
Ji pe(x|%X1)q(%1)d%;

202

— tx4/?
exp(—ﬁ) and o=1-—1¢.

Jic X1pe(x[X1)q(%1)d%x:1 , N(x)

Sepe(x[%1)g(Z1)d% — D(x)’

33



Appendix B: Proof of Theorem 2

Differentiating p(x) with respect to x yields under compact assumption, we can interchange the
integral and the gradient

ViN(x)D(x) = N(x)VxD(x) VxN(x)— p(x)VxD(x) |

Vahlx) = D)’ - D)
Due to Vyp: (x|x1) = —*=54p,(x|x1), we have
VAN () =~ [C %, (x — t21) T pe (x|%1)g(%1 )%,
VxD(x) = ~— K(x — %) " p (x|%1)q(%1)dX;.
Thus,
V«E[x|x] = ng(x) /}C(E[xﬂx] —x1)(x — tx1) " q(x%1|x)dx;.

Taking the norm, by Jensen’s Inequality and the property of 1-rank matrix, we have

1
VBl ]| < —5Eqjae) [[Efxealx] — x| - [|x =t [|] <

g @R (Il + tR)

KAIST




Appendix B: Proof of Theorem 2 :
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Since we consider a bounded domain D (e.g., a maze environment) with diameter M < oo, we have
||x|| < M for all x € D. Therefore, the above norm is uniformly bounded:
2R(M + tR)

(1-t)2

VB[ |x][| <

Since o is chosen to be 1 — (1 — oy )t in practical optimal transport, instead 1 — ¢ [5], we have

SR(M +tR) + (1 — (1 — omin)t)?
(1 — (1 — omim)t)® ’

L) < (16)

where ¢t € [0, 1].

Conclusion: To control the global error, it is desirable to adapt the time step At based on the local
Lipschitz constant. Due to Equation (16), it follows that
1 (1—1t)3

At .
F X Tte) © 2R(M +tR) + (1 — t)?

Complete the proof.
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