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Introduction
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Introduction: Problem Statement
● Challenges

○ Existing planners : Struggle with dynamic, real-world complexity
○ Need : Planners for general, realistic environments
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● Strength: Multimodal path planning from expert data
● Limitations: Requires high-quality data, static environments only
● Focus: Analyze dataset impact, extend to dynamic scenes

Introduction: MPD

[Inference without unseen obstacles] [Inference with unseen obstacles]
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Project Objectives: Generalizing MPD
Overall Goal: Enhance MPD's applicability to real-world scenarios.

● Objective 1: Analyze Dataset Quality Impact
○ Compare MPD trained on:

■ Sub-optimal data (less-than-expert)
■ Optimal data (expert demonstrations)

○ Focus: Success rate difference

[Sub-optimal Dataset] [Optimal Dataset]
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● Objective 2: Extend MPD to Dynamic Environments
○ Evaluate static-trained MPD in dynamic scenes
○ Propose adaptations for dynamic planning
○ Focus: Safety & efficiency with moving obstacles

Project Objectives: Generalizing MPD
Overall Goal: Enhance MPD's applicability to real-world scenarios.

[Dynamic Environment][Static Environment]



8CS586 Spring 2025

Related Works
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Related Works : MPD vs. Safe RL

MPD Safe RL

Training

Input
Expert trajectory dataset

Offline trajectory dataset

(by. a random policy)

Training

Goal
Learn an unconditional trajectory distribution Learn trajectory distribution for high reward

Inference

Method

Sample trajectories via reverse diffusion

Apply classifier-guided cost gradients at 
each step

After each step, project trajectory into feasible 
constraint set
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Limitations : MPD 

● Assumes static environments (no dynamics during train/infer)

● One-shot trajectory sampling → can't adapt to changes

● No dynamic obstacle modeling

● Dynamic use requires:

○ Constant velocity assumption

○ Known obstacle speeds

○ Manual motion encoding in cost

● No feedback or re-planning → unsuitable for online scenarios
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Limitations : Safe RL 

● Trained on random policy trajectories

● In dense scenes:

○ Early collisions, short failed paths

● Results:

○ Few long-horizon successes

○ Poor generalization in cluttered environments

● Constraints not learned, only projected at inference

● No constraint exposure during training
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Proposed Methodology
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Dataset Quality

Optimal Dataset (Standard MPD)

● Use RRT-Connect + B-spline smoothing
● Produces smooth, collision-free expert paths
● All samples have a fixed length
● Simulates ideal demonstrations

Evaluation & Expected Outcome:

● Train MPD on both dataset types, 50% mixed dataset
● Focus on performance degradation
● Quantifies impact of data quality on planning
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Dataset Quality

Sub-optimal Data (Safe RL-inspired)

● RRT* with zero goal sampling probability, early stopping

⇒ Intentionally applied imperfect planning

● Resulting dataset includes a near-misses, collision free paths (up)

or paths with collisions, failures (down)

● To match the MPD formulation, all samples have a fixed length

● Rationale: Simulates learning from less-than-expert data, common in 

real-world scenarios or initial stages of learning.
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Dynamic Environment

Naive Application (Static Train / Dynamic Test)

● We will only consider PointMass2D-Simple environment from MPD

● Train MPD on static environments only

● Add unseen dynamic obstacles only at test time to avoid

unstable learning from dynamic data (e.g., O.O.D, stochasticity)

● Goal: Test MPD’s zero-shot generalization

● MPD expected to fail on this environment

● Collision cost function depends on time 

⇒ Harder to compute gradients for guidance 
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Dynamic Environment

Oracle-Guided Time-Varying Cost

● Assume full knowledge of future obstacle motion 

⇒ Can compute cost function at time t during inference of a whole trajectory

● MPD “looks ahead” during trajectory generation (proactive collision avoidance)
[original static guidance] [modified dynamic guidance]

c_0
c_T c_0c_1 c_T

…

Have to compute cost function every timestep
⇒ This approach is inherently inefficient

…
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Experimental Results
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Result 1. Impact of dataset quality 

● PointMass2D-Simple environment

[MPD pre-trained model] [MPD original dataset]

Baseline results are reproduced well
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Result 1. Impact of dataset quality 

● PointMass2D-Simple environment

[MPD original dataset] [MPD mixed dataset] [MPD random dataset]

Using sub-optimal dataset for training led to a performance loss
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Result 1. Impact of dataset quality 

● Quantitative Comparison

● Mixed dataset also have some optimal examples, performance may depend 
on start, goal position, showing stitching capability with diverse paths

● As expected, random data performed worst.

pre-trained : provided weight
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Result 2. Extend MPD to dynamic environments

● Qualitative Comparison 1.

Unnecessary 
go-around

[MPD naive application] [dynamic guidance applied]

No 
go-around
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Result 2. Extend MPD to dynamic environments

● Qualitative Comparison 2.

[MPD naive application] [dynamic guidance applied]

Does not 
consider 
obstacle 
movement

Slow down 
before collision

Unnecessary 
go-around
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Objective 2. Extend MPD to dynamic environments

● Quantitative Comparison with Metrics

● Minor performance loss in collision free trajectories, smoothness, path length
● Sampling time increased : cost function has to be recomputed every timestep
● Current method : more harm than good

[MPD naive application] [dynamic guidance applied]

Collision intensity : percentage of the waypoints that are in collision 
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Discussion
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Key Observations & Limitations

● Limited Robot Diversity
○ Only pointmass tested; complex robots (e.g., Panda) already covered in prior work

● SDF Instability
○ Sharp obstacles lead to unstable gradients

○ Smoother SDF representations are needed

● 2D MPD Not Executed
○ Real-world execution would require inverse kinematics learning

● Dynamic Data Instability
○ Training with moving obstacles may cause OOD issues

○ MPD may fail under unseen motion distributions

● Only Works for Constant-Velocity Obstacles
○ Not applicable to nonlinear or unpredictable motions
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Conclusion & Future Work
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Conclusion

● Dataset Quality
○ MPD works reasonably with sub-optimal data if state space is well covered
○ Expert data yields better performance in some metrics, however, 

improving robustness using mixed sub-optimal dataset for training seems promising

● Dynamic Planning
○ Validated guidance using predicted future obstacle positions (w/o projection)
○ Performance gain was insignificant compared to limitations such as 

Needs perfect information for dynamic obstacles
Calculating cost function every timestep is computationally heavy 
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Future Work

● Dynamic Obstacle in Training
○ Integrate moving obstacles into training data

● Visual-Based Perception
○ Use images to inform MPD about obstacle motion

● Improved Collision Avoidance
○  Extend planning with proactive avoidance in dynamic scenes
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Thank You


