

Toward Generalized Application of the Motion Planning Diffusion

Final Project Presentation

Team 6 20243347 JeongWoo Park 20244212 JiHwan Mo

Contents

- 1. Introduction
- 2. Related Works
- 3. Proposed Methodology
- 4. Experimental Results
- 5. Discussion
- 6. Conclusion
- 7. Team Roles

Introduction

Introduction: Problem Statement

- Challenges
 - Existing planners : Struggle with dynamic, real-world complexity
 - Need : Planners for general, realistic environments

(a) Static Environment

(b) Dynamic Environment

Introduction: MPD

- Strength: Multimodal path planning from expert data
- Limitations: Requires high-quality data, static environments only
- Focus: Analyze dataset impact, extend to dynamic scenes

[Inference without unseen obstacles]

Project Objectives: Generalizing MPD

Overall Goal: Enhance MPD's applicability to real-world scenarios.

• Objective 1: Analyze Dataset Quality Impact

- Compare MPD trained on:
 - Sub-optimal data (less-than-expert)
 - Optimal data (expert demonstrations)
- Focus: Success rate difference

Project Objectives: Generalizing MPD

Overall Goal: Enhance MPD's applicability to real-world scenarios.

• Objective 2: Extend MPD to Dynamic Environments

- Evaluate static-trained MPD in dynamic scenes
- Propose adaptations for dynamic planning
- Focus: Safety & efficiency with moving obstacles

Related Works

Related Works : MPD vs. Safe RL

	MPD	Safe RL			
Training	Export trainatory dataset	Offline trajectory dataset			
Input		(by. a random policy)			
Training	Learn on unconditional trajactory distribution	Loorn trainctony distribution for high roward			
Goal		Learn trajectory distribution for high reward			
Inference Method	Sample trajectories via reverse diffusion				
	Apply classifier-guided cost gradients at each step	After each step, project trajectory into feasible constraint set			

Limitations : MPD

- Assumes static environments (no dynamics during train/infer)
- **One-shot trajectory sampling** \rightarrow can't adapt to changes
- No dynamic obstacle modeling
- Dynamic use requires:
 - Constant velocity assumption
 - Known obstacle speeds
 - Manual motion encoding in cost
- No feedback or re-planning \rightarrow unsuitable for online scenarios

Limitations : Safe RL

- Trained on random policy trajectories
- In dense scenes:
 - Early collisions, short failed paths
- Results:
 - Few long-horizon successes
 - Poor generalization in cluttered environments
- Constraints not learned, only projected at inference
- No constraint exposure during training

Proposed Methodology

Dataset Quality

Optimal Dataset (Standard MPD)

- Use RRT-Connect + B-spline smoothing
- Produces smooth, collision-free expert paths
- All samples have a fixed length
- Simulates ideal demonstrations

Evaluation & Expected Outcome:

- Train MPD on both dataset types, 50% mixed dataset
- Focus on performance degradation
- Quantifies impact of data quality on planning

Dataset Quality

Sub-optimal Data (Safe RL-inspired)

- RRT* with zero goal sampling probability, early stopping
 ⇒ Intentionally applied imperfect planning
- Resulting dataset includes a near-misses, collision free paths (up) or paths with collisions, failures (down)
- To match the MPD formulation, all samples have a fixed length
- Rationale: Simulates learning from less-than-expert data, common in real-world scenarios or initial stages of learning.

Dynamic Environment

Naive Application (Static Train / Dynamic Test)

- We will only consider PointMass2D-Simple environment from MPD
- Train MPD on static environments only
- Add unseen dynamic obstacles only at test time to avoid unstable learning from dynamic data (e.g., O.O.D, stochasticity)
- Goal: Test MPD's zero-shot generalization
- MPD expected to fail on this environment
- Collision cost function depends on time
 - \Rightarrow Harder to compute gradients for guidance

Dynamic Environment

Oracle-Guided Time-Varying Cost

- Assume full knowledge of future obstacle motion
 - \Rightarrow Can compute cost function at time **t** during inference of a whole trajectory

• MPD "looks ahead" during trajectory generation (proactive collision avoidance)

Experimental Results

Result 1. Impact of dataset quality

• PointMass2D-Simple environment

Baseline results are reproduced well

Result 1. Impact of dataset quality

• PointMass2D-Simple environment

Using sub-optimal dataset for training led to a performance loss

Result 1. Impact of dataset quality

• Quantitative Comparison

pre-trained : provided weight

Table 1: Impact of training data sub-optimality in Motion Planning Diffusion

	Metrics						
MPD Model	total t↓	free traj. ↑	intensity ↓	smoothness \downarrow	cost path length ↓	cost best ↓	variance ↑
Pre-trained	0.99	98%	0.01	2.97 ± 0.32	2.05 ± 0.08	3.79	0.54
Original data	1.15	96%	0.17	3.01 ± 0.56	2.03 ± 0.16	3.53	1.11
Mixed	1.3	92%	0.12	3.73 ± 1.26	1.99 ± 0.13	2.96	3.10
Random data	1.25	88%	0.27	5.04 ± 1.14	1.97 ± 0.19	4.74	2.37

- Mixed dataset also have some optimal examples, performance may depend on start, goal position, showing stitching capability with diverse paths
- As expected, random data performed worst.

Result 2. Extend MPD to dynamic environments

• Qualitative Comparison 1.

Result 2. Extend MPD to dynamic environments

• Qualitative Comparison 2.

Objective 2. Extend MPD to dynamic environments

• Quantitative Comparison with Metrics

Collision intensity : percentage of the waypoints that are in collision

- Minor performance loss in collision free trajectories, smoothness, path length
- Sampling time increased : cost function has to be recomputed every timestep
- Current method : more harm than good

Discussion

Key Observations & Limitations

• Limited Robot Diversity

• Only pointmass tested; complex robots (e.g., Panda) already covered in prior work

• SDF Instability

- Sharp obstacles lead to unstable gradients
- Smoother SDF representations are needed

• 2D MPD Not Executed

• Real-world execution would require inverse kinematics learning

• Dynamic Data Instability

- Training with moving obstacles may cause OOD issues
- MPD may fail under unseen motion distributions

Only Works for Constant-Velocity Obstacles

• Not applicable to nonlinear or unpredictable motions

Conclusion & Future Work

Conclusion

• Dataset Quality

- MPD works reasonably with sub-optimal data if state space is well covered
- Expert data yields better performance in some metrics, however, improving robustness using mixed sub-optimal dataset for training seems promising

• Dynamic Planning

- Validated guidance using predicted future obstacle positions (w/o projection)
- Performance gain was insignificant compared to limitations such as Needs perfect information for dynamic obstacles Calculating cost function every timestep is computationally heavy

Future Work

• Dynamic Obstacle in Training

• Integrate moving obstacles into training data

• Visual-Based Perception

• Use images to inform MPD about obstacle motion

Improved Collision Avoidance

• Extend planning with proactive avoidance in dynamic scenes

Thank You