Final Project Presentation: Improvement on Bimanual Grasp Pose Synthesis

Team 3

Seungwan Kang, Hajun Park

Contents

- 1. Overview of Bimanual Dexterous Grasping
- 2. Limitation and Solution
- 3. Process & Result
- 4. Conclusion

1. Overview of Bimanual Dexterous Grasping

1.1. Overall structure

1.2. Generation term in detail

1.1. Overall structure

: Bimanual Grasp Synthesis for Dexterous Robot Hands (ICRA 25)

BimanGrasp Algorithm

- Generate Dataset by gradient descent of Energy term from initial state Hand-Object Distance, Force Closure and Penetration

DDPM Algorithm

- Generate pose using diffusion model and execute few optimization to avoid penetration

1.2. Generation term in detail

BimanGrasp Algorithm

- Energy term is generated by weighted sum of energy below
- There are some details in optimizer and stochastic acception method

2. Limitation and Solution

2.1. Limitations of the Baseline Paper

2.2. Proposal 1: Separate Contact Points

2.3. Proposal 2: Consider Gravity and Stability

2.1. Limitations of the Baseline Paper

Recap: Energy terms in Bimanual Grasp Synthesis for Dexterous Robot Hands (ICRA 25)

1. Insufficient Success Rate

Bimanual Grasps Left Hand Grasps Right Hand Grasps 0.4 0.3 0.2 0.1 0.2 0.3 0.4 0.5 0.6 0.7

\mathbf{Method}	ho=5000	ho=2500	ho=500
Both Hands (Optimization)	41.02%	54.03%	71.42%
Uni2Bim (opt)	32.87%	45.26%	56.69%
Left Hand Only	23.38%	41.48%	68.42%
Right Hand Only	21.85%	41.95%	68.48%
Both Hands (Diffusion)	42.39%	54.06%	69.87%

2. Frequent Penetration

Fig. 9: Visualization of four most common failure patterns: (A) hand-object penetration, (B) hand's self-penetration, (C) inter-hand penetration, and (D) failure to establish contact.

2.1. Limitations of the Baseline Paper

Recap: Energy terms in Bimanual Grasp Synthesis for Dexterous Robot Hands (ICRA 25)

TABLE I: Energy function for grasp search problem. The minimization objective of the algorithm is the weighted sum of all terms.

Term	Formulation	
$E_{ m dis}$: Hand-object distance	$\sum_{a=1}^{n} d(x_a, O)$	
$E_{\rm fc}$: Force Closure	$ Gc _2$	
$E_{\rm Vew}$: Wrench Ellipse Volume	$\left(\det\left(\mathbf{G}\mathbf{G}^{T}\right)\right)^{-rac{1}{2}}$	
$E_{\rm objpen}$: Hand-Object Penetration	$\sum_{l \in \{1,2\}} \sum_{p_l \in P(H_l)} \max(\delta - d(p_l, O), 0)$	
$E_{selfpen}$: Hand Self-Penetration	$\sum_{l \in \{1,2\}} \sum_{p,q \in P(H_l)} \max(\delta - d(p,q), 0)$	
E_{bimpen} : Inter-Hands Penetration	$\sum_{p \in P(H_1), q \in P(H_2)} \max(\delta - d(p, q), 0)$	
$E_{\rm joint}$: Violation of Joint Limits	$\sum_{i=1}^{44} (\max(\theta_i - \theta_i^{max}, 0) + \max(\theta^{min} - \theta_i, 0))$	

Problems of E_bimpen

- Adding **only** inter-hands penetration energy term may not be sufficient to reflect interaction b/w two hands

2.2. Proposal 1: Separating Contact Points

- Some initial attempts
 - 1. Friction cone integration
 - 2. Separate object region with contact points

- Problems

- Too much time for generation(Optimization)
- Hard to balance weights when the energies are complicated
- Need to simplify our target energy

2.2. Proposal 1: Separating Contact Points

E_contact_separation
 Modified attempts: separate each contact points

Definitions of point sets

$$P_L = \{p_{L, 1}, p_{L, 2}, \ldots, p_{L, N_L}\}$$
: contact points of the left hand

$$P_R = \{p_{R, 1}, p_{R, 2}, \ldots, p_{R, N_R}\}$$
: contact points of the right hand

 $d_{\min} = \min_{p_L \in P_L, p_R \in P_R} d(p_L, p_R)$

: minimum distance between the two hands

Definitions of distances

$$d_{LL} = rac{1}{N_L \, (N_L - 1)/2} \Sigma_{i
eq j, \; p_L \in P_L} d(p_{L,\; i}, p_{L,\; j})$$

: sum of distances between contact points of the left hand

$$d_{RR} = rac{1}{N_R \, (N_R - 1)/2} \Sigma_{i
eq j, \; p_R \in P_R} d(p_{R,\; i}, p_{R,\; j})$$

: sum of distances between contact points of the right hand

2.2. Proposal 1: Separating Contact Points

- Modified attempts: separate each contact points

$$E_{sep} = egin{cases} (\delta - d_{min})^2 & ext{if } d_{min} < \delta \ 0 & ext{otherwise} \end{cases}$$

$$E_{div} = e^{-lpha \cdot d_{min}} + eta \cdot (ext{mean}(d_{LL}) + ext{mean}(d_{RR}))$$

- $\alpha = \text{scaling factor of penalty}$
- $\beta =$ scaling factor of coverage bonus

Also consider distribution of contact points in one hand!

2.3. Proposal 2: Consider Gravity and Stability

 Motivation: Current generation doesn't consider gravity, and check validation with 6 direction force. Model always aim for highly controllable grasp rather than stable control

E_gravity_support (sum of upward (z-axis) components of contact normals)

$$\mathrm{ReLU}\left(\mathrm{threshold}-\sum_i n_{i,z}
ight)$$

E_vertical_stability (total torque computed from all contact points)

$$\left| \sum_i \left(\mathbf{r}_i imes \mathbf{f}_i
ight)
ight|$$

3. Process & Result

3.1. Overall Process

3.2. Result

3.1 Overall process

Default Parameter

Output (below are example figure)

Parameter	Value
n_iter	5000
$w_{ m dis}$	150.0
$w_{ m pen}$	160.0
$w_{ m spen}$	10.0
$w_{ m joints}$	40.0
$w_{ m bimpen}$	10.0
$w_{ m vew}$	1.0
$w_{ m contact_sep}$	0.0
$w_{ m gravity_support}$	0.0
$w_{ m vertical_stability}$	0.0
separation_threshold	0.02

- graph by wandb

- generated pose with html file

3.2 Result

Default (no additional energy term)

w_gravity_support : 10.0 w_vertical_stability: 20.0 & w_contact_sep : 5.0

3.2 Result

- Contact Separation could obtain less penetration result
- Furthermore, just increasing weight of previous term could not make wide gripping pose
- Previous penetration term has stricter restraint and it only increases rejection by optimizer

3.2 Result

- **Gravity support** could generate pose with hand under object in small batch size 100
- Even though energy term is added, total mean has not much increase

4. Conclusion

4. Conclusion

Summary

- 1. Previous methods have limitations on low performance and frequent penetration
- 2. We propose two methods:
 - a. Separation Energy between Contact Points
 - b. Gravity Consideration and Vertical Stability Energy

Limitations So Far

- 1. Haven't achieved much success for validation process yet.
- 2. Tried <10 objects
- 3. Hard to optimize for small & concave objects
- 4. Time consuming (Almost double compared with unimanual)

Future Directions

- 1. Fine tune & Elaborate codes to achieve success in IsaacGym
- 2. Try on more objects
- 3. Compare performance with the baseline method

Thank you

Q&A