SafeFlowMatcher

Safe and Fast Planning using Flow Matching with Control Barrier Functions

2025.06.04

Team 1 Jiwon Park & Jeongyong Yang

Review: Towards Efficient Assembly Part Motion Planning <u>for Robotic Assembly</u>

• **Problem**: Random action sampling lacks efficiency.

• Key Idea:

Use VLMs (e.g., GPT-40) to predict promising disassembly directions from 3 orthographic images and a text prompt

• Experiments:

- Fewer actions sampling → Faster plan
- Validate in narrow-passage scenarios

Contents

- 1. Introduction
- 2. Limitations
- 3. Proposed Method
- 4. Experimental Results
- 5. Conclusions

Introduction: Safe Generative Model Planning

• SafeDiffuser incorporates with control barrier functions to guarantee safety

[The SafeDiffuser Workflow]

Limitation 1: Slow Planning

• Diffusion-based planner like Diffuser needs a lot of denoising steps, leading to high computation load and slow generation (planning).

Figure 1. Diffuser is a diffusion probabilistic model that plans by iteratively refining trajectories.

Limitation 2: Local Traps

• Local traps occur when trajectories are safe but unable to reach the goal.

Limitation 2: Local Traps

• They addressed this local problem, but the local rates are still high!

Method	$S-SPEC(\uparrow \& \ge 0)$	$\begin{array}{c} \text{C-SPEC}(\uparrow \\ \& \geq 0) \end{array}$	Score (\uparrow)	TIME	NLL	Trap rate 1 (↓)	Trap rate 2 (↓)
DIFFUSER JANNER ET AL. (2022)	-0.983	-0.894	$1.598{\pm}0.174$	0.006	4.501±0.475		
TRUNC. BROCKMAN ET AL. (2016)	$-1.192e^{-7}$	-0.759	$1.577 {\pm} 0.242$	0.024	$4.494{\pm}0.465$		
CG DHARIWAL & NICHOL (2021)	-0.789	-0.979	$0.384{\pm}0.020$	0.053	6.962 ± 0.350		
CG- ε Dhariwal & Nichol (2021)	-0.853	-0.995	$0.383{\pm}0.017$	0.061	$6.975 {\pm} 0.343$		
INVODE XIAO ET AL. (2023b)	14.000	$1.657e^{-5}$	-0.025 ± 0.000	0.018	_		
ROS-DIFFUSER (OURS)	0.010	0.010	$1.519 {\pm} 0.330$	0.106	$4.584{\pm}0.646$	100%	100%
RoS-DIFFUSER-CF (OURS)	0.010	0.010	$1.536 {\pm} 0.306$	0.007	4.481 ± 0.298	100%	100%
ReS-DIFFUSER (OURS)	0.010	0.010	$1.557 {\pm} 0.289$	0.107	$4.434{\pm}0.561$	46%	17%
ReS-DIFFUSER-CF (OURS)	0.010	0.010	$1.544{\pm}0.280$	0.007	$4.619 {\pm} 0.652$	36%	16%
TVS-DIFFUSER (OURS)	0.003	0.003	$1.543 {\pm} 0.303$	0.107	$4.533 {\pm} 0.494$	47%	21%
TVS-DIFFUSER-CF (OURS)	0.003	0.003	$1.588 {\pm} 0.231$	0.007	$4.462 {\pm} 0.431$	48%	18%
ReS-diffuser-l10 (Ours)	0.010	0.010	$1.527{\pm}0.291$	0.011	4.571 ± 0.693	39%	8%

[Results of SafeDiffuser]

Method 1: FlowMatcher

- We implemented a flow-matching-based planner called **FlowMatcher**, based on conditional flow matching theory and inspired by Diffuser paper.
- FlowMatcher can generate paths **FAST**.

Diffuser

FlowMatcher

Method 2: Finite-time CBF with Relaxation

• **SafeDiffuser** (Relaxation form)

• SafeFlowMatcher

$$\min_{u,r} \|u - u_{des}\|^{2} + \|r\|^{2}$$
s.t. $\nabla_{x}h(x)u + \alpha h(x) \ge -w(t)r$
Relaxation
$$\min_{u,r} \|u - u_{des}\|^{2} + \|r\|^{2}$$
s.t. $\nabla_{x}h(x)u + \alpha |h(x)|^{\rho} \ge -w(t)r$

• w(i) is monotonically decreasing function where *i* is denoising step.

KAIST_{*} Here, we wrote the equation as simple as possible to clearly deliver the concept. It's not mathematical rigor.

Method 2: Finite-time CBF with Relaxation

- What does *p* stand for?
- *ρ* enforces the system converge faster, even in finite time.

Method 2: Finite-time CBF with Relaxation

We analytically derived the finite-time bound for convergence.
Here, t₀ is the time when w(t)=0.

$$T \leq t_0 + \frac{|h(x)|^{1-\rho}}{\alpha(1-\rho)}$$

• The Key point is that **if we select proper hyperparameters**, we can guarantee the finite-time convergence to the safe set.

Method 3: Adaptive Time Scheduling

• Diffusion-based methods denoise over fixed steps.

•However, flow matching-based method can adopt adaptive step sizes thanks to their continuous-time formulation.

Feature	Diffusion Models	Flow Matching Methods		
Time Domain	Discrete time steps (e.g., 256 steps)	Continuous time, modeled via ODEs		
Step Size	Fixed by noise schedule	Arbitrary		

•We select Δt decreasingly to address the local trap problems.

Method 3: Adaptive Time Scheduling

- •Local traps occur when CBF constraints dominate early.
- •We first go over obstacles with a **few large steps** under weak CBF.
- •Then, we safely refine trajectory using **many small steps** with strong CBF.

- Experiments
 - Maze2D
 - Qualitative evaluation on Safety, Trap Rate, Computation Time compared to SafeDiffuser
 - Locomotion
 - Qualitative evaluation on Score, Safety, Computation Time compared to SafeDiffuser

Maze2D

Walker2D

• Maze2D

- SafeFlowMatcher is the only method with near-zero trap rates
- SafeFlowMatcher acheives the shortest planning time

Method	S-Spec(†)	C-Spec(†)	Score(↑)	Time per Step(↓)	Total Time*(↓)	Trap Rate 1(↓)	Trap Rate 2(↓)
RoS-Diffuser	0.010	0.010	1.632 ± 0.203	0.006	1.536	100%	100%
ReS-Diffuser	0.010	0.018	1.504 ± 0.282	0.006	1.536	83%	79%
TVS-Diffuser	-0.018	-0.018	1.569 ± 0.203	0.006	1.536	67%	67%
SafeFlowMatcher (Ours)	0.010	0.010	1.458 ± 0.432	0.006	0.384	1%	0%

[Maze Planning Comparison]

* Number of Steps : 256 (SafeDiffuser), 64 (SafeFlowMatcher)

• Locomotion : Experimental Environment

Simulation Platform	MuJoCo Physics Engine	
Benchmark Dataset	D4RL	
Test Task	Walker2D, Hopper	
Model Architecture	TemporalUnet	
Horizon	600	
Training Epoch	100	
Steps per Epoch	5,000	
Batch Size	32 (training), 512 (planning)	
Learning Rate	2e-4	
Max Episode Length	1000	
Hardware	H100 (training), RTX3060 (planning)	

[Details of Experiments]

• Locomotion : Walker2D

[SafeFlowMatcher]

- Locomotion : Walker2D
 - SafeFlowMatcher achieves 25.6% improvement in performance metrics
 - The improvement in performance comes 1.6% less computation time
 - SafeFlowMatcher reduces unsafe risk by 60.75%

Mille for all all all all all all all all all al				
		SafeDiffuser	SafeFlowMatcher	
[SafeDiffuser*]	Score	0.39	0.49	
	Computation Time(s)	1.837	1.807	
	Safety	-4.468	-1.754	
WALLAL LILAL AND	[Lomotion Planning Comparison]			

[SafeFlowMatcher]

* RoS Diffuser

• Locomotion : Hopper

[SafeDiffuser]

[SafeFlowMatcher]

- Locomotion : Hopper
 - SafeFlowMatcher achieves a 59.7% higher score than SafeDiffuser
 - SafeFlowMatcher reduces unsafe risk by 94.6%

[SafeDiffuser]

[SafeFlowMatcher]

	SafeDiffuser	SafeFlowMatcher
Score	0.524	0.837
Computation Time(s)	0.434	0.694
Safety	-2.918	-0.159

[Lomotion Planning Comparison]

• Summary

- SafeFlowMatcher outperformes baselines in both Maze2D and Locomotion tasks
 - Acheives **lower trap rate** and **safety improvement**
- Delivers faster planning and supports scalable step sizes
- Demonstrates effectiveness across both high-dimensional motion and safety-aware planning

Contributions

	Jiwon Park	Jeongyong Yang
Paper review	О	О
Theory		
SafeFlowMatcher theory	V	Ο
Adaptive time scheduling	V	Ο
Existing methods validations		
SafeDiffuser	Ο	V
Implementation		
FlowMatcher	Ο	О
Finite-time CBF	V	Ο
Experiments		
Maze2D	Ο	Ο
Legged Locomotion (Warker2D, Hopper)	Ο	V

O: contribute, V: support

Thank you

Appendix

- Evaluation Metric
 - Specification
 - Calculated by the minimum values of the functions among all runs that define the safety constraints
 - S-Spec : Simple (Quadratic)
 - C-Spec : Complex (Quartic)
 - Local Trap
 - The safety value satisfies b(x) = 0 or b(x) < 0.01
 - The distance between consecutive points exceeds a predefined threshold δ
 - Trap Rate
 - Trap Rate 1 : at least one trap is encountered
 - Trap Rate 2 : two or more traps are encountered
 - Safety
 - Minimum normalized distance between the agent and the ceiling

