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Class Objectives

e Discuss basic concepts of reinforcement
learning

e Last time:
e RRT techniques and kinodynamic planner
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Branches of Machine Learning

Supervised Unsupervised
Learning Learning

Machine
Learning

Reinforcement
Learning

4 Ack: slides of David Silver KAIST



Characteristics of
Reinforcement Learning

e What makes reinforcement learning
different from other machine learning
paradigms?

e There is no supervisor, only a reward signal

e Feedback is delayed, not instantaneous

e Time really matters (sequential, non 1.1.d data)
®

Agent’s actions affect the subsequent data it
receives
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Examples of Reinforcement
Learning

¢ Fly stunt maneuvers in a helicopter
e Make a humanoid robot walk
e Manage an investment portfolio

e Play many different Atari games better
than humans
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Rewards

e A reward R; is a scalar feedback signal
e Indicates how well agent is doing at step t

e The agent’s job is to maximize cumulative
reward

Reinforcement learning is based on the
reward hypothesis

Definition (Reward Hypothesis)

All goals can be described by the maximization of
expected cumulative reward
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Examples of Rewards

¢ Fly stunt maneuvers in a helicopter
e + reward for following desired trajectory
e — reward for crashing

e Make a humanoid robot walk
e + reward for forward motion
e — reward for falling over

e Manage an investment portfolio
e + reward for each $ in bank
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Sequential Decision Making

e Goal
e Select actions to maximize total future reward

e Actions may have long term consequences
e Reward may be delayed
e It may be better to sacrifice immediate reward
to gain more long-term reward
e Examples:

e Refueling a helicopter (might prevent a crash
In several hours)

e Blocking opponent moves (might help winning
chances many moves from now)
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Agent and Environment

At . Y
LAY TN e At each step t, the agent:
. f? J -; 'P * [ " . . - =
observation// |- oL - _action e Receives observation 0;
% [y At e Receives scalar reward R;

e EXxecutes action A;

e The environment:
e Receives action A;

e Emits observation 0;.;
e Emits scalar reward R;.

e tincrements at env. step
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History and State

e The history is the sequence of observations,
actions, rewards

Ht — O],R] ,A], ...,At—] ; Ot,Rt

e What happens next depends on the history:
e The agent selects actions
e The environment selects observations/rewards

e State is the information used to determine
what happens next

e Formally, state is a function of the history:

St = f(Ht)
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Information State

e An information state (a.k.a. Markov state)

contains all useful information from the
history

A state S: is Markov if and only if

P[5t+1 |St] = P[St+1 |51,---, St]

e "The future is independent of the past given
the present”

e Once the state is known, the history may be
thrown away
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Major Components of an RL
Agent

e An RL agent may include one or more of
these components:
e Policy: agent’s behavior function
e Value function: how good is each state and/or
action
e Model: agent’s representation of the
environment

KAIST
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Policy

e A policy is the agent’s behavior
e A map from state to action, e.g.

e Deterministic policy: a = T1(S)

e Stochastic policy: 1t(als) = P[A:= a|S:= s]
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Value Function

e Value function is a prediction of future
reward

e Used to evaluate the goodness/badness of
states, and thus to select between actions,

e.g.
Vi(S) = En [ Re+1 + YRe+2 + YZRt+3 + .| St=5]

9.9 [
98"
0

Playing Atari with Deep Reinforcement Learning
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Model

e A model predicts what the environment
will do next

e P predicts the next state
e R predicts the next (immediate) reward, e.q.

P, =P[Sty1 =5 | St =s,Ar = 4
Ri = |t [Rt+1 ‘ St = S.At = 3]
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Maze Example

Goal

e Rewards: -1 per time-step
e Actions: N, E, S, W
e States: Agent’s location
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Maze Example: Policy

e Arrows represent policy 11(s) for each state s
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Maze Example: Value Function

Start | -

Goal

e Numbers represent value v;:(s) of each state s
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Action-Value Function:
Q-function

e Expected return starting from state s,
taking action A and then following policy
with y as the discounting factor.

Qﬂ.(s’ a) =K [rt+1 -+ Yrt42 + ’)/2rt_|_3 + ... | Sy a]

e Goodness of state given an action a
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Learning and Planning

e Two fundamental problems in sequential
decision making:

e Reinforcement Learning:
e The environment is initially unknown
e The agent interacts with the environment
e The agent improves its policy
e Planning:
e A model of the environment is known

e The agent performs computations with its
model (without any external interaction)

e The agent improves its policy

¢ a.k.a. deliberation, reasoning, introspection,
21 pondering, thought, search KAIST



Learning and Planning

e Rules of the game are

ST unknown
observation ; Kf jﬂ: _; ; *_ . : x action ® Lea n direCtIy fI'Om
S W interactive game-play

e Pick actions on
joystick, see pixels
and scores
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Exploration and Exploitation (1)

e Reinforcement learning is like trial-and-
error learning

e The agent should discover a good policy from
its experiences of the environment without
losing too much reward along the way
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Exploration and Exploitation (2)

e Exploration finds more information about
the environment

e Exploitation exploits known information to
maximize reward

e It is usually important to explore as well
as exploit

e Example of game playing
e Exploitation: Play the move you believe is best
e Exploration: Play an experimental move
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DQN: Deep Q-Network

e DON = Q-learning + Deep Network
e Stabilize training with experience replay: store experience in a

buffer and randomly sample them, to break the correlation
between consecutive samples

e End-to-end RL approach, flexible

Q(s,a) = Q5 (0(s)),Vs € S,Va € A

CONVOLUTIONAL LAYERS w

N S CIONN

®
.: F 0 0.2(9(s)
:. L] / M) 048/1:12
o « actionvalue /
state s . K . / action a:
S ® - .
: i / wmedee  video
-\ TN 0in(eGs))

parameter 6
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Beyond learning from reward

e Basic reinforcement learning deals with
maximizing rewards

e This is not the only problem that matters for
sequential decision making!
e More advanced topics

e Learning reward functions from example
(inverse reinforcement learning)

e Transferring knowledge between domains
(transfer learning, meta-learning)

e Learning to predict and using prediction to act

KAIST



Where do rewards come from?

reward

Mnih etal."15
reinforcement learning agent
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| Basal ganglia

Il cortex (movement, reward)

M Thalamus
(sensory gateway)

M Hippocampus
(memory)

Hypothalamus
(regulates body
function)

Amygdala
(emotion)
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Are there other forms of
supervision?

e Learning from demonstrations
e Directly copying observed behavior
e Inferring rewards from observed behavior
(inverse reinforcement learning)
e Learning from observing the world
e Learning to predict
e Unsupervised learning

e Learning from other tasks
e Transfer learning
e Meta-learning: learning to learn
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Class Objectives were:

e Discuss basic concepts of reinforcement
learning

e Detailed lectures on the topic:
o https://www.davidsilver.uk/teaching/
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