Hashing Techniques

윤성의 (Sung-Eui Yoon)

Associate Professor KAIST

http://sglab.kaist.ac.kr

Student Presentation Guidelines

- Good summary, not full detail, of the paper
 - Talk about motivations of the work
 - Give a broad background on the related work
 - Explain main idea and results of the paper
 - Discuss strengths and weaknesses of the method
- Prepare an overview slide
 - Talk about most important things and connect them well

High-Level Ideas

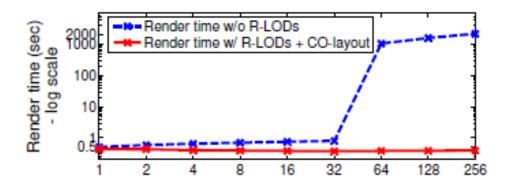
- Deliver most important ideas and results
 - Do not talk about minor details
 - Give enough background instead
- Deeper understanding on a paper is required
 - Go over at least two related papers and explain them in a few slides
- Spend most time to figure out the most important things and prepare good slides for them

Be Honest

- Do not skip important ideas that you don't know
 - Explain as much as you know and mention that you don't understand some parts
- If you get questions you don't know good answers, just say it
- In the end, you need to explain them before the semester ends at KLMS board

Result Presentation

- Give full experiment settings and present data with the related information
 - What does the x-axis mean in the below image?



- After showing the data, give a message that we can pull of the data
- Show images/videos, if there are

Utilizing Existing Resources

- Use author's slides, codes, and video, if they exist
- Give proper credits or citations
 - Without them, you are cheating!

Deliver Main Ideas of the Paper

- Identify main ideas/contributions of the paper and deliver them
- If there are prior techniques that you need to understand, study those prior techniques and explain them
 - For example, A paper utilizes B's technique in its main idea. In this case, you need to explain B to explain A well.

Audience feedback form

Date:

Talk title:

Speaker:

1. Was the talk well organized and well prepared?

5: Excellent

4: good 3: okay 2: less than average

1: poor

2. Was the talk comprehensible? How well were important concepts covered?

5: Excellent 4: good 3: okay 2: less than average

1: poor

Any comments to the speaker

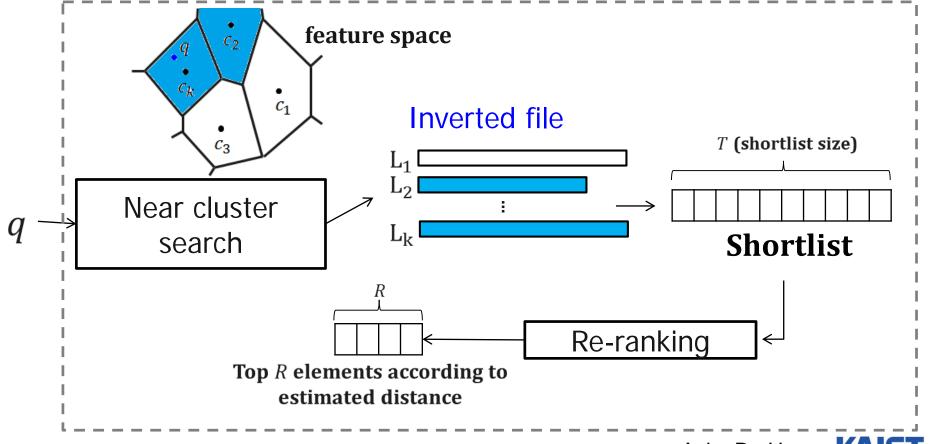
Prepare Quiz

- Review most important concepts of your talk
- Prepare two multiple-choices questions
- Example: What is the biased algorithm?
 - A: Given N samples, the expected mean of the estimator is I
 - B: Given N samples, the exp. Mean of the estimator is I + e
 - C: Given N samples, the exp. Mean of the estimator is I + e, where e goes to zeor, as N goes to infinite

Class Objectives

- Understand the basic hashing techniques based on hyperplanes
- Get to know a recent one based on hyperspheres

Review of Basic Image Search



Ack.: Dr. Heo

Image Search

Finding visually similar images

Image Descriptor

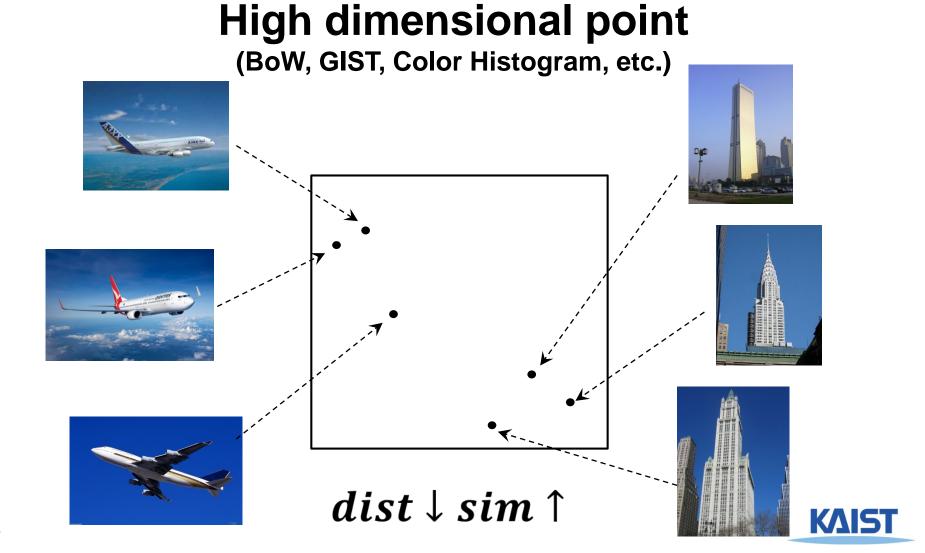
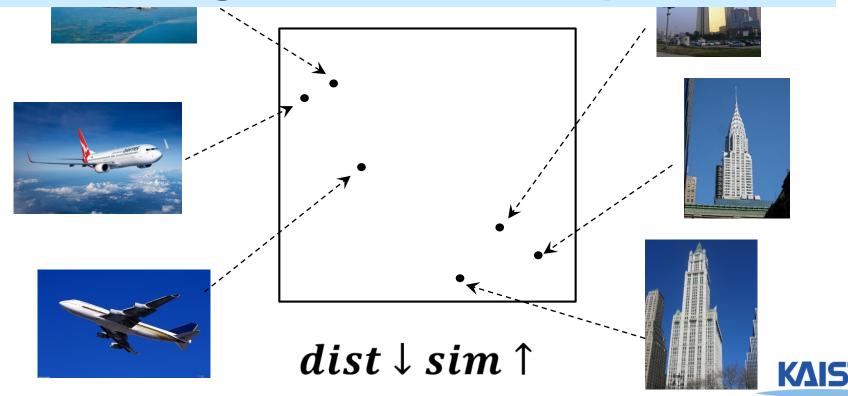


Image Descriptor

High dimensional noint
Nearest neighbor search (NNS)
in high dimensional space

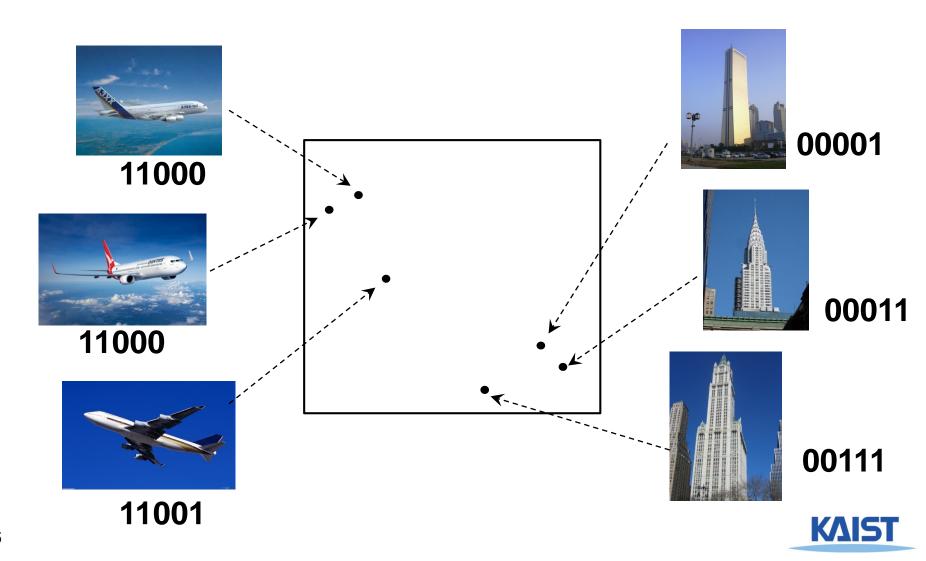


Challenge

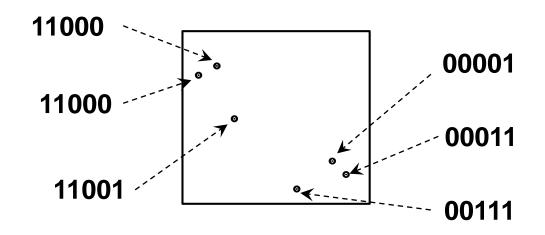
	BoW	GIST
Dimensions	1000+	300+
1 image	4 KB+	1.2 KB+
1B images	3 TB+	1 TB+

$$\frac{144 \ GB \ memory}{1 \ billion \ images} \approx \frac{128 \ bits}{1 \ image}$$

Binary Code



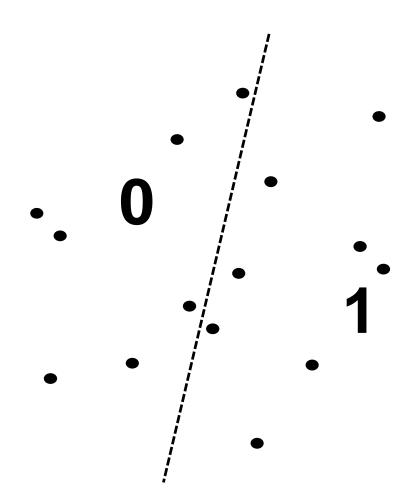
Binary Code



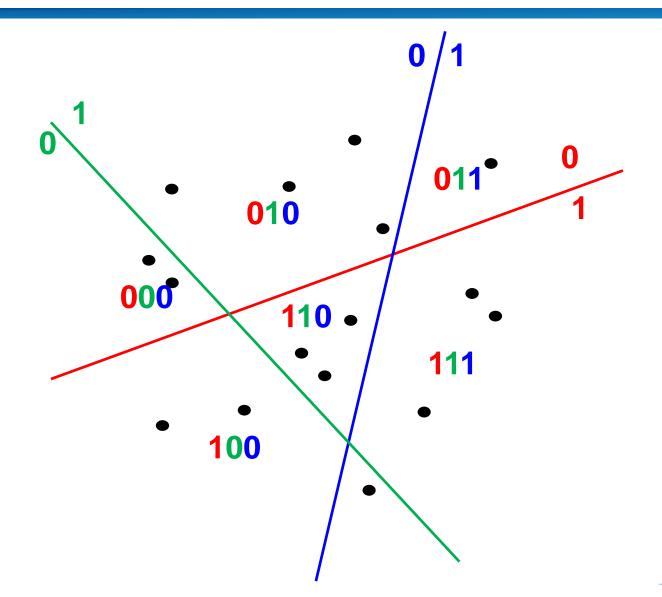
* Benefits

- Compression
- Very fast distance computation (Hamming Distance, XOR)

Hyper-Plane based Binary Coding



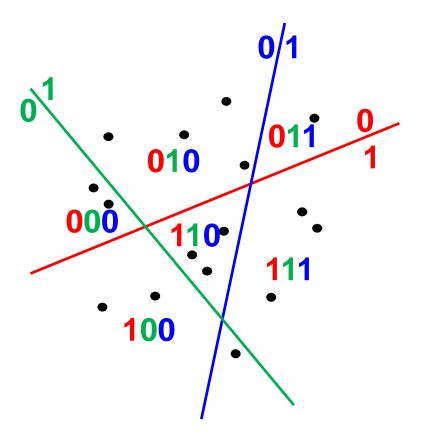
Hyper-Plane based Binary Coding



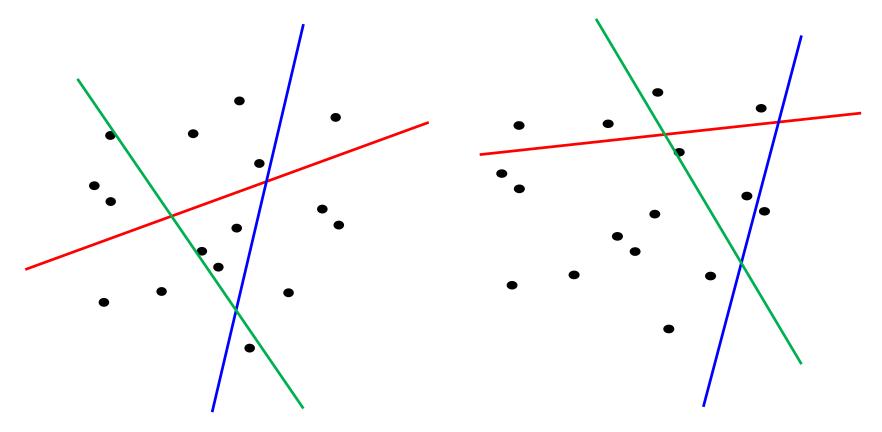
Distance between Two Points

- Measured by bit differences, known as Hamming distance
- Efficiently computed by XOR bit operations

$$d_{hd}(b_i, b_j) = |b_i \oplus b_j|$$



Good and Bad Hyper-Planes



Previous work focused on how to determine good hyper-planes

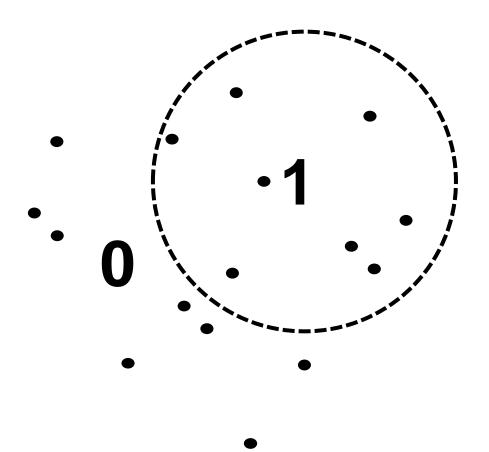
Components of Spherical Hashing

- Spherical hashing
- Hyper-sphere setting strategy
- Spherical Hamming distance

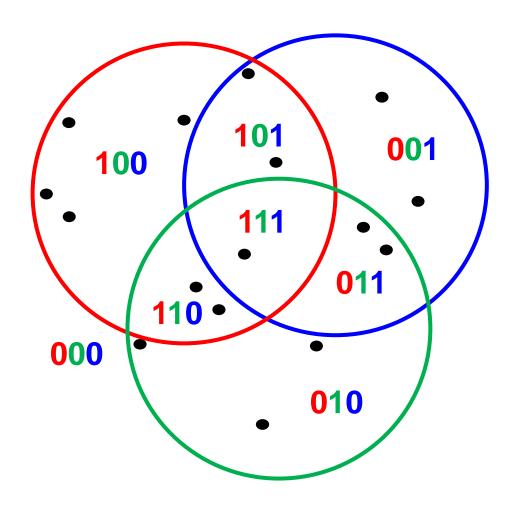
Components of Spherical Hashing

- Spherical hashing
- Hyper-sphere setting strategy
- Spherical Hamming distance

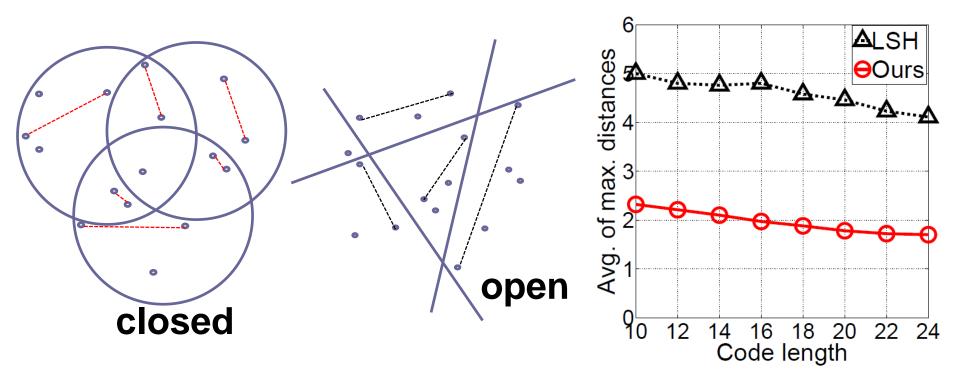
Spherical Hashing [Heo et al., CVPR 12]



Spherical Hashing [Heo et al., CVPR 12]



Hyper-Sphere vs Hyper-Plane



Average of maximum distances within a partition:

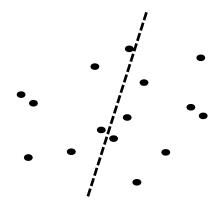
- Hyper-spheres gives tighter bound!

Components of Spherical Hashing

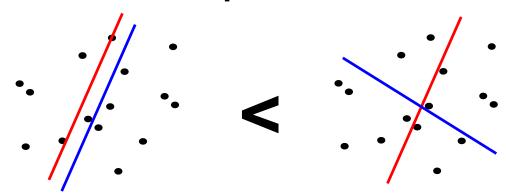
- Spherical hashing
- Hyper-sphere setting strategy
- Spherical Hamming distance

Good Binary Coding [Yeiss 2008, He 2011]

1. Balanced partitioning

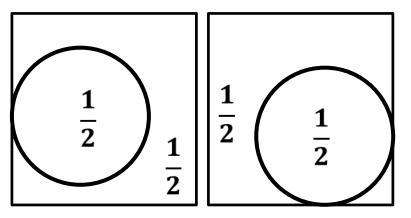


2. Independence

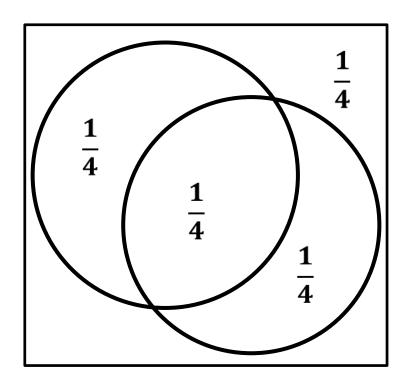


Intuition of Hyper-Sphere Setting

1. Balance



2. Independence

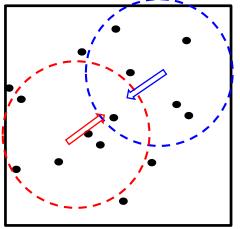


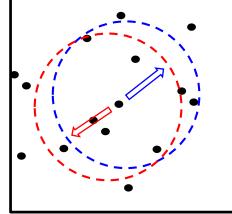
Hyper-Sphere Setting Process

- 1. Balance
- by controlling radius for $n(S) = \frac{N}{2}$

- 2. Independence
- by moving two hyper-

spheres for
$$n(S_1 \cap S_2) = \frac{N}{4}$$



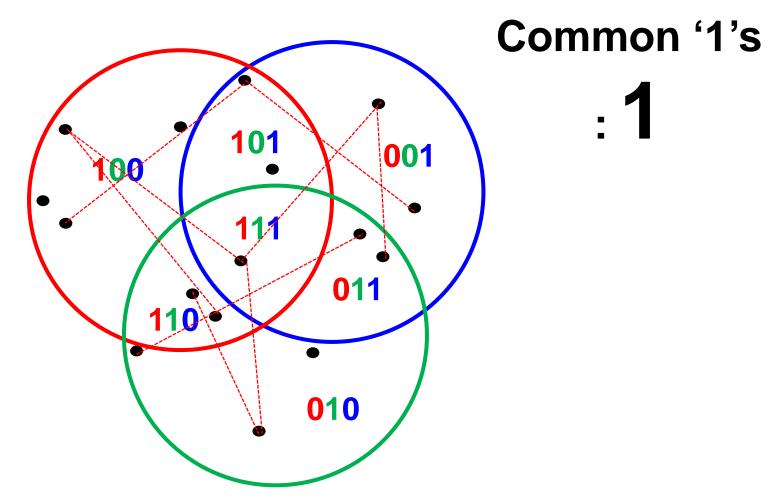


Iteratively repeat step 1, 2 until convergence.

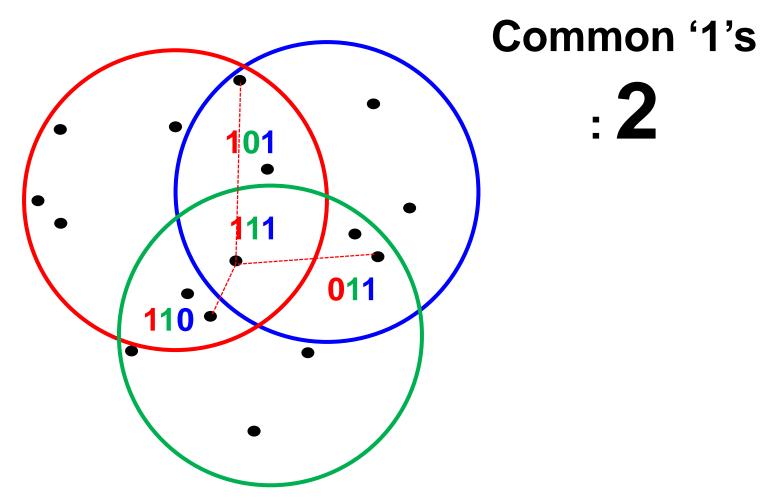
Components of Spherical Hashing

- Spherical hashing
- Hyper-sphere setting strategy
- Spherical Hamming distance

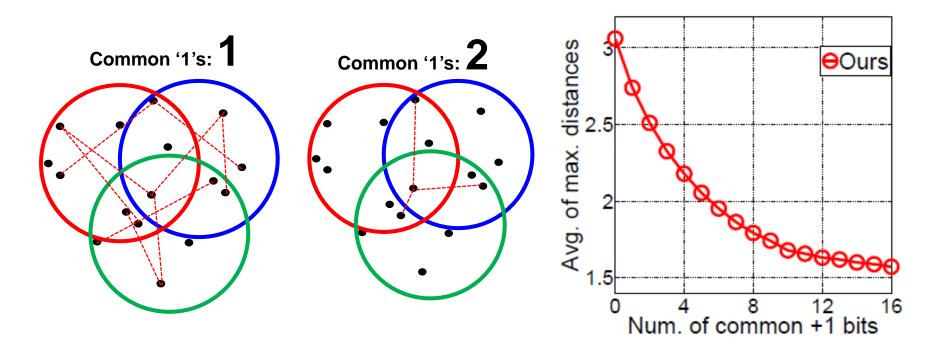
Max Distance and Common '1'



Max Distance and Common '1'



Max Distance and Common '1'



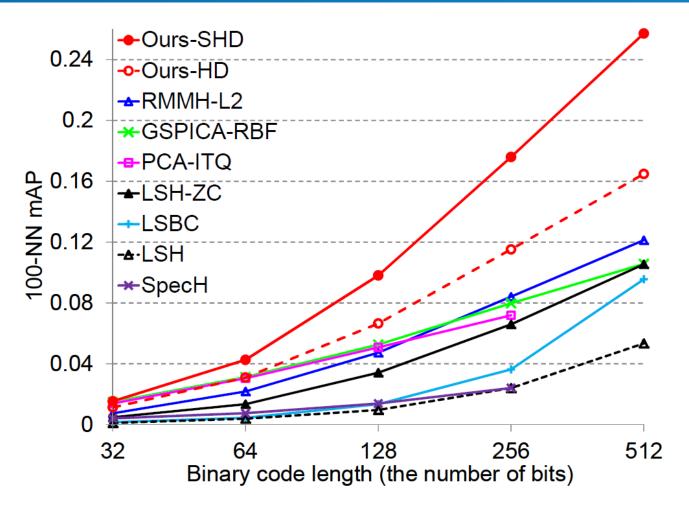
Average of maximum distances between two partitions: decreases as number of common '1'

Spherical Hamming Distance (SHD)

$$d_{shd}(b_i, b_j) = \frac{|b_i \oplus b_j|}{|b_i \wedge b_j|}$$

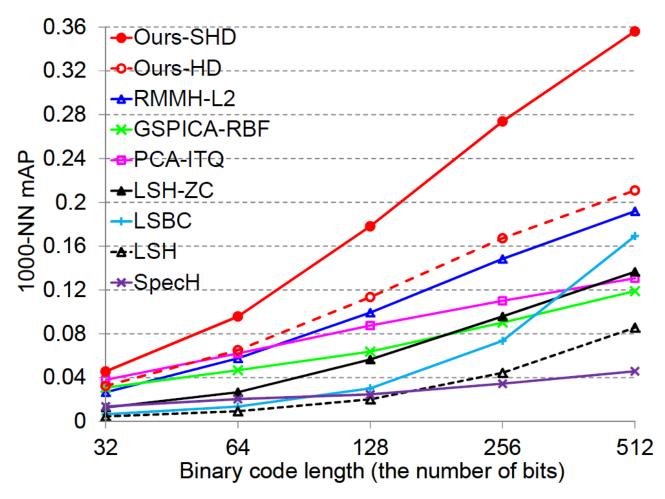
SHD: Hamming Distance divided by the number of common '1's.

Results



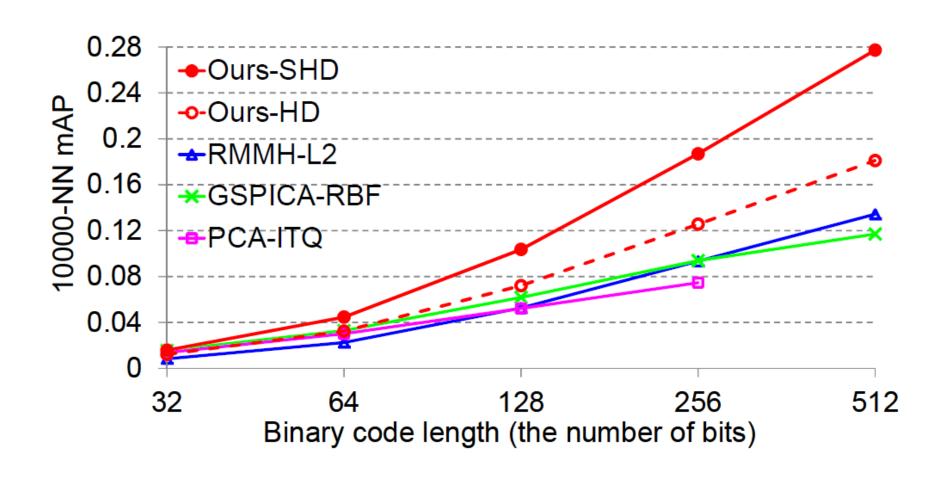
384 dimensional 1 million GIST descriptors

Results



960 dimensional 1 million GIST descriptors

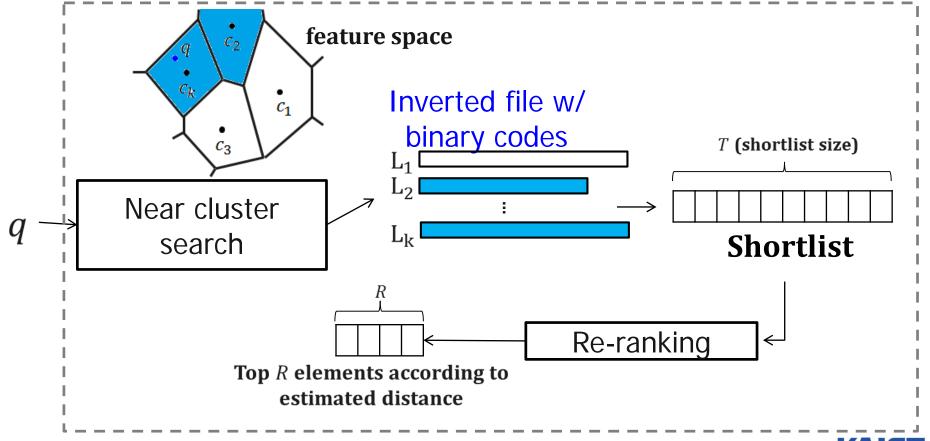
Results



Summary

- The need of binary code embedding
- Spherical binary code embedding
 - Uses spherical hashing for tighter bounds
 - Iterative process to achieve balance and independence
 - Spherical Hamming distance

Summary



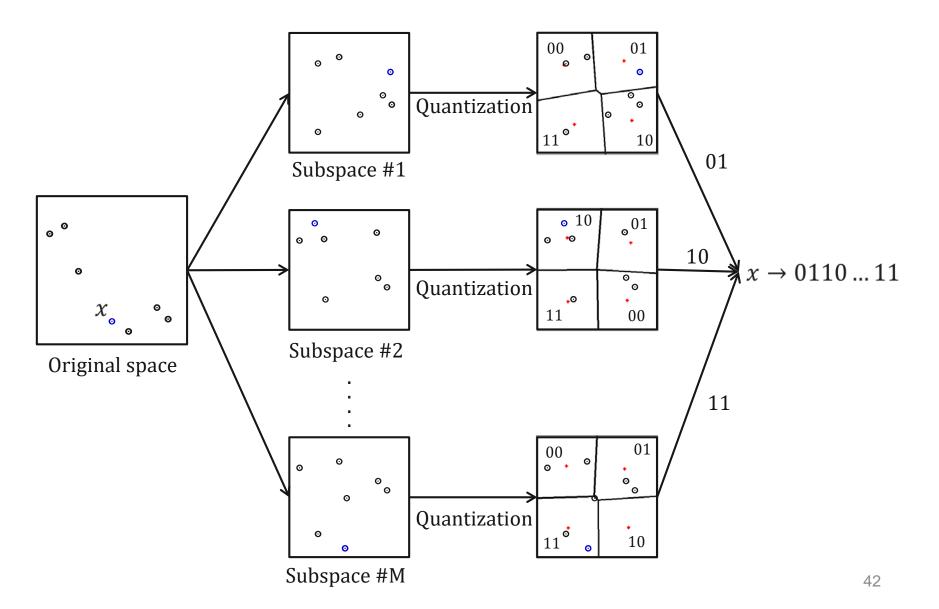
Ack.: Dr. Heo

Distance Encoded Product Quantization

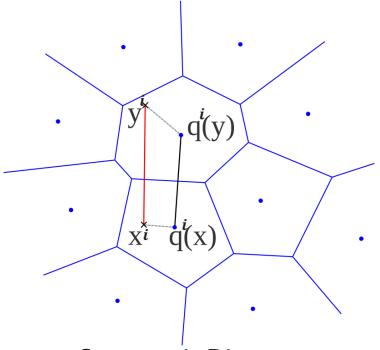
Jae-Pil Heo, Zhe Lin, and Sung-Eui Yoon

CVPR 2014

PQ: Product Quantization [Jegou et al., TPAMI 2011]

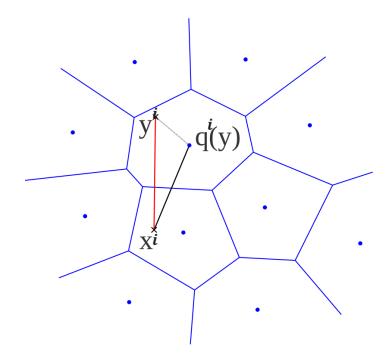


Distance Computation in PQ



Symmetric Distance

$$d_{SD}^{PQ}(x,y)^{2} = \sum_{i=1}^{M} ||q^{i}(x^{i}) - q^{i}(y^{i})||^{2}$$



Asymmetric Distance

$$d_{AD}^{PQ}(x,y)^{2} = \sum_{i=1}^{M} ||x^{i} - q^{i}(y^{i})||^{2}$$

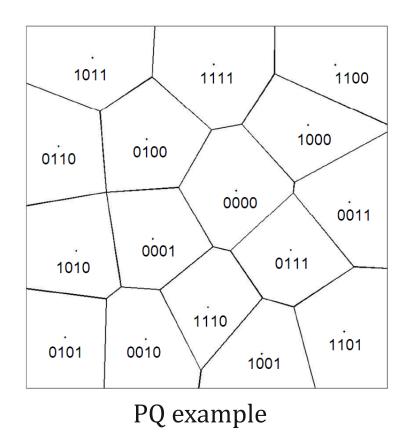
Terms

x: query, y: data, M: # of Subspaces,

 q^i : quantizer in i^{th} subspace, x^i : sub-vector of x in i^{th} subspace

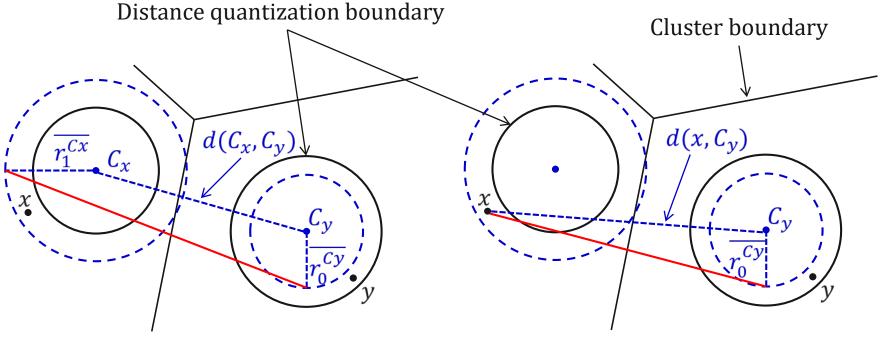
DPQ: Distance Encoded PQ

 DPQ encodes quantized distance from the center as well as the cluster index in each subspace.



DPQ example

Distance Computation in DPQ



Symmetric Distance

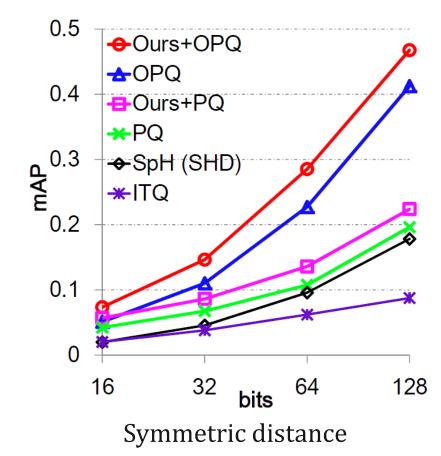
$$d_{SD}^{DPQ}(x,y)^2 = d(C_x, C_y)^2 + \overline{r_1^{Cx}}^2 + \overline{r_0^{Cy}}^2$$

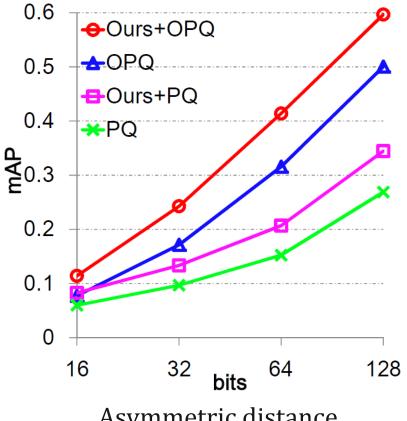
Asymmetric Distance

$$d_{SD}^{DPQ}(x,y)^2 = d(x,C_y)^2 + \overline{r_0^{Cy}}^2$$

 r_j^C : average distance from the center to points whose cluster center is C and quantized distance index is j

Results on GIST-1M-960D





Asymmetric distance

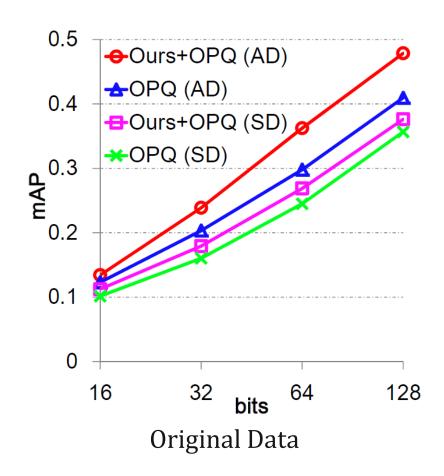
1000-nearest neighbor search mAP

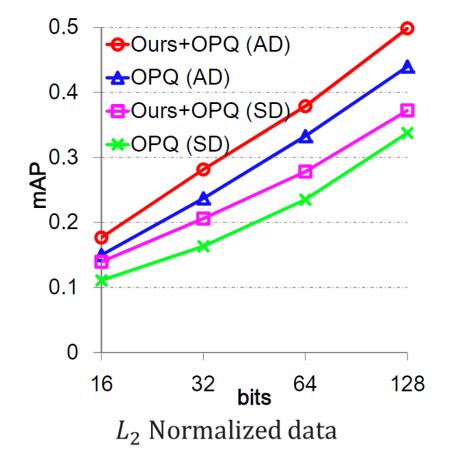
OPQ: Optimized PQ [Ge et al., CVPR 2013]

SpH: Sperical Hashing [Heo et al., CVPR 2012]

ITQ: Iterative Quantization [Gong and Lazebnik, CVPR 2011]

Results on BoW-1M-1024D





1000-nearest neighbor search mAP

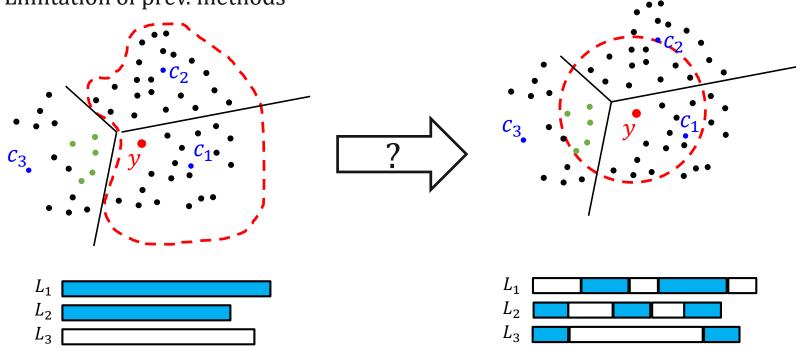
SD: Symmetric distance

AD: Asymmetric distance

Residual-Aware Shortlist Retrieval

[Jaepil et al., CVPR 2016]

Limitation of prev. methods

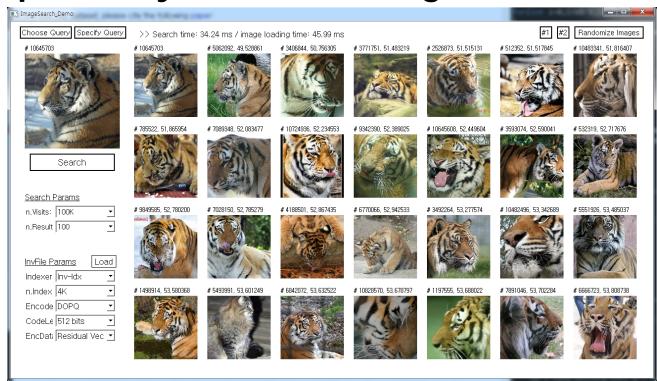


Neighbors could be missed due to the quantization error

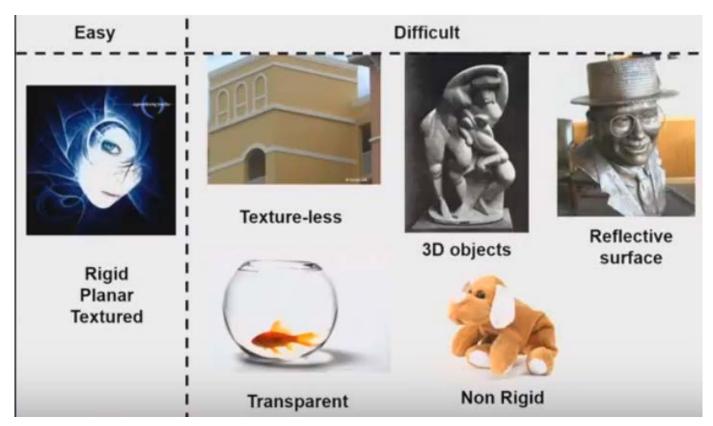
Select promising subset in parallel from all the lists

Results of Image Retrieval

- Collaborated with Adobe
 - 11M images
 - Use deep neural nets for image representations
 - Spend only 35 ms for a single CPU thread



Limitations of Image Search



Large-scale video retrieval

30 frames per sec., 5 billion shared video at youtube

Ack: Vijay Chandrasekhar

Class Objectives were:

- Understand the basic hashing techniques based on hyperplanes
- Get to know a recent one based on hyperspheres
- Codes are available

http://sglab.kaist.ac.kr/software.htm

Next Time...

Novel applications

