Hashing Techniques

윤성의 (Sung-Eui Yoon) Professor KAIST

http://sgvr.kaist.ac.kr

Class Objectives

- **Understand the basic hashing techniques based on hyperplanes**
	- **Unsupervised approach**
- **Sematic hashing using deep learning**

● **At the last class:**

- **Discussed re-ranking methods: spatial verification and query expansion**
- **Talked about inverted index**

Review of Basic Image Search

Image Search

Finding visually similar images

Image Descriptor

High dimensional point

(BoW, GIST, Color Histogram, etc.) $dist \downarrow sim \uparrow$

Image Descriptor

High dimensional point Nearest neighbor search (NNS) in high dimensional space

Challenge

$$
\frac{144\text{ }GB\text{ }memory}{1\text{ }billion\text{ }images} \approx \frac{128\text{ }bits}{1\text{ }image}
$$

Binary Code

Binary Code

- *** Benefits**
	- **- Compression**
	- **- Very fast distance computation (Hamming Distance, XOR)**

Hyper-Plane based Binary Coding

Hyper-Plane based Binary Coding

Distance between Two Points

- **Measured by bit differences, known as Hamming distance**
- **Efficiently computed by XOR bit operations**

$$
d_{hd}(b_i,b_j)=\displaystyle
$$

$$
|b_i \oplus b_j|
$$

Good and Bad Hyper-Planes

Previous work focused on how to determine good hyper-planes

Components of Spherical Hashing

- **Spherical hashing**
- **Hyper-sphere setting strategy**
- **Spherical Hamming distance**

Components of Spherical Hashing

- **Spherical hashing**
- **Hyper-sphere setting strategy**
- **Spherical Hamming distance**

Spherical Hashing [Heo et al.,
CVPR 12]

Spherical Hashing [Heo et al., CVPR 12]

Hyper-Sphere vs Hyper-Plane

Average of maximum distances within a partition: - Hyper-spheres gives tighter bound!

Components of Spherical Hashing

- **Spherical hashing**
- **Hyper-sphere setting strategy**
- **Spherical Hamming distance**

Good Binary Coding [Yeiss 2008, He 2011]

1. Balanced partitioning

Intuition of Hyper-Sphere Setting

1. Balance 2. Independence

Hyper-Sphere Setting Process

- 1. Balance
- by controlling radius for $n(S) =$

Iteratively repeat step 1, 2 until convergence.

Components of Spherical Hashing

- **Spherical hashing**
- **Hyper-sphere setting strategy**
- **Spherical Hamming distance**

Max Distance and Common '1'

Max Distance and Common '1'

KAIS

Max Distance and Common '1'

Average of maximum distances between two partitions: decreases as number of common '1'

Spherical Hamming Distance (SHD)

$$
d_{shd}(b_i, b_j) = \frac{|b_i \oplus b_j|}{|b_i \wedge b_j|}
$$

SHD: Hamming Distance divided by the number of common '1's.

Results

384 dimensional 75 million GIST descriptors

KAIS

Results of Image Retrieval

● **Collaborated with Adobe**

- **11M images**
- **Use deep neural nets for image representations**
- **Spend only 35 ms for a single CPU thread**

Semantic Hashing: Finding binary codes for BoW model

Ack. Hinton

Document

Binary codes for image retrieval

- Maybe we should extract a real-valued vector that has information about the content?
	- Matching real-valued vectors in a big database is slow and requires a lot of storage.
- Short binary codes are very easy to store and match.

A two-stage method

- First, use semantic hashing with 28-bit binary codes to get a long "shortlist" of promising images.
- Then use 256-bit binary codes to do a serial search for good matches.
	- This only requires a few words of storage per image and the serial search can be done using fast bit-operations.
- But how good are the 256-bit binary codes?
	- Do they find images that we think are similar?

Krizhevsky's deep autoencoder

Start w/ 32 by 32 image patch

Reconstructions of 32x32 color images from 256-bit codes

retrieved using 256 bit codes

 $dist: 68$

dist: 61

dist: 70

dist: 70

dist: 66

dist: 67

dist: 67

dist: 71

dist: 67

retrieved using Euclidean distance in pixel intensity space

dist: 3161.9

dist: 3064.2

dist: 3094.1

dist: 64

dist: 3188.1

dist: 3154.8

dist: 3210.3

$dist: 0$

 $dist: 64$

dist: 60

dist: 61

retrieved using 256 bit codes dist: 62

dist: 66

dist: 66

dist: 62

dist: 63

dist: 66

dist: 66

dist: 64

retrieved using Euclidean distance in pixel intensity space

dist: 2930.2

dist: 2942.6

dist: 2899.1

dist: 66

Class Objectives were:

- **Understand the basic hashing techniques based on hyperplanes**
	- **Unsupervised approach**
- **Semantic hashing**
- **Codes are available**

http://sglab.kaist.ac.kr/software.htm

Homework for Every Class

- **Go over the next lecture slides**
- **Come up with one question on what we have discussed today**
	- **Write questions three times**
- **Go over recent papers on image search, and submit their summary before Mon. class**

Next Time…

● **Person Re-Identification, Re-ID**

