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Class Objectives
●Understand the basic hashing techniques 

based on hyperplanes
● Unsupervised approach

● Sematic hashing using deep learning

● At the last class:
● Discussed re-ranking methods: spatial 

verification and query expansion
● Talked about inverted index
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Review of Basic Image Search

Near cluster 
search

feature space

Shortlist

Inverted file

…

Re-ranking

Ack.: Dr. Heo
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Image Search

Finding visually similar images
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Image Descriptor
High dimensional point

(BoW, GIST, Color Histogram, etc.)
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Image Descriptor
High dimensional point

(BoW, GIST, Color Histogram, etc.)Nearest neighbor search (NNS)
in high dimensional space
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Challenge

BoW CNN
Dimensions 1000+ 4000+
1 image 4 KB+ 16 KB+
1B images 4 TB+ 16 TB+
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Binary Code
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Binary Code
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* Benefits
- Compression
- Very fast distance computation 
(Hamming Distance, XOR)
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Hyper-Plane based Binary Coding
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Hyper-Plane based Binary Coding
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Distance between Two Points
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●Measured by bit 
differences, known as 
Hamming distance

● Efficiently computed 
by XOR bit operations
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Good and Bad Hyper-Planes

Previous work focused on 
how to determine good hyper-planes
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Components of Spherical 
Hashing 
● Spherical hashing

● Hyper-sphere setting strategy

● Spherical Hamming distance
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Components of Spherical 
Hashing
● Spherical hashing

● Hyper-sphere setting strategy

● Spherical Hamming distance
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Spherical Hashing [Heo et al., 
CVPR 12]
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Spherical Hashing [Heo et al., 
CVPR 12]
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Hyper-Sphere vs Hyper-Plane

Average of maximum distances within a partition:
- Hyper-spheres gives tighter bound!

open
closed
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Components of Spherical 
Hashing
● Spherical hashing

● Hyper-sphere setting strategy

● Spherical Hamming distance
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Good Binary Coding [Yeiss 2008, He 2011]

1. Balanced partitioning

2. Independence

<
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Intuition of Hyper-Sphere Setting

1. Balance 2. Independence
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Hyper-Sphere Setting Process

Iteratively repeat step 1, 2 until convergence.
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Components of Spherical 
Hashing
● Spherical hashing

● Hyper-sphere setting strategy

● Spherical Hamming distance
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Max Distance and Common ‘1’
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Max Distance and Common ‘1’
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Max Distance and Common ‘1’

Common ‘1’s: 1 Common ‘1’s: 2

Average of maximum distances between two
partitions: decreases as number of common ‘1’
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Spherical Hamming Distance (SHD)

SHD: Hamming Distance divided by the number
of common ‘1’s.
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Results

384 dimensional 75 million GIST descriptors



38

Results of Image Retrieval
● Collaborated with Adobe

● 11M images
● Use deep neural nets for image representations
● Spend only 35 ms for a single CPU thread



Semantic Hashing:
Finding binary codes for BoW model

• Train an auto-encoder using 30 logistic 
units for the code layer.
– We simply threshold the activities 

of the 30 code units to get a binary 
code.

2000  reconstructed counts

500 neurons

2000  word counts

500 neurons 

250 neurons 

250 neurons 

30  code

Ack. Hinton



Using a deep autoencoder as a hash-function for 
finding approximate matches

hash 
function

supermarket 
search



Binary codes for image retrieval

• Maybe we should extract a real-valued vector that has information 
about the content?
– Matching real-valued vectors in a big database is slow and  

requires a lot of storage.
• Short binary codes are very easy to store and match.



A two-stage method

• First, use semantic hashing with 28-bit binary codes to get a long 
“shortlist” of  promising images.

• Then use 256-bit binary codes to do a serial search for good 
matches.
– This only requires a few words of storage per image and the 

serial search can be done using fast bit-operations.
• But how good are the 256-bit binary codes?

– Do they find images that we think are similar?



Krizhevsky’s deep autoencoder

1024 1024 1024

8192

4096

2048

1024

512

256-bit binary codeThe encoder has 
about 67,000,000 
parameters. There is no theory to 

justify this architectureIt takes a few days on 
a GTX 285 GPU to 
train on two million 
images. 

Start w/ 32 by 32 image patch



Reconstructions of 32x32 color images from 256-bit codes



retrieved using 256 bit codes

retrieved using Euclidean distance in pixel intensity space



retrieved using 256 bit codes

retrieved using Euclidean distance in pixel intensity space
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Class Objectives were:
●Understand the basic hashing techniques 

based on hyperplanes
● Unsupervised approach

● Semantic hashing

● Codes are available

http://sglab.kaist.ac.kr/software.htm
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Homework for Every Class
● Go over the next lecture slides
● Come up with one question on what we have 

discussed today
● Write questions three times

● Go over recent papers on image search, and submit 
their summary before Mon. class
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Next Time…
● Person Re-Identification, Re-ID
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