Hashing Techniques

윤성의 <mark>(Sung-Eui Yoon)</mark> Professor KAIST

http://sgvr.kaist.ac.kr

Class Objectives

- Understand the basic hashing techniques based on hyperplanes
 - Unsupervised approach
- Sematic hashing using deep learning

• At the last class:

- Discussed re-ranking methods: spatial verification and query expansion
- Talked about inverted index

Review of Basic Image Search

Image Search

Finding visually similar images

KAIS

Image Descriptor

High dimensional point

(BoW, GIST, Color Histogram, etc.) $dist \downarrow sim \uparrow$

Image Descriptor

High dimensional point Nearest neighbor search (NNS) in high dimensional space

Challenge

	BoW	CNN
Dimensions	1000+	4000+
1 image	4 KB+	16 KB+
1B images	4 TB+	16 TB+

$$\frac{144 \ GB \ memory}{1 \ billion \ images} \approx \frac{128 \ bits}{1 \ image}$$

Binary Code

Binary Code

- * Benefits
 - Compression
 - Very fast distance computation (Hamming Distance, XOR)

Hyper-Plane based Binary Coding

Hyper-Plane based Binary Coding

Distance between Two Points

- Measured by bit differences, known as Hamming distance
- Efficiently computed by XOR bit operations

$$d_{hd}(b_i, b_j) =$$

$$|b_i\oplus b_j|$$

Good and Bad Hyper-Planes

Previous work focused on how to determine good hyper-planes

Components of Spherical Hashing

- Spherical hashing
- Hyper-sphere setting strategy
- Spherical Hamming distance

Components of Spherical Hashing

- Spherical hashing
- Hyper-sphere setting strategy
- Spherical Hamming distance

Spherical Hashing [Heo et al., CVPR 12]

Spherical Hashing [Heo et al., CVPR 12]

Hyper-Sphere vs Hyper-Plane

Average of maximum distances within a partition: - Hyper-spheres gives tighter bound!

Components of Spherical Hashing

- Spherical hashing
- Hyper-sphere setting strategy
- Spherical Hamming distance

Good Binary Coding [Yeiss 2008, He 2011]

1. Balanced partitioning

Intuition of Hyper-Sphere Setting

1. Balance

2. Independence

Hyper-Sphere Setting Process

- 1. Balance
- by controlling radius for $n(S) = \frac{N}{2}$

Iteratively repeat step 1, 2 until convergence.

Components of Spherical Hashing

- Spherical hashing
- Hyper-sphere setting strategy
- Spherical Hamming distance

Max Distance and Common '1'

Max Distance and Common '1'

Max Distance and Common '1'

Average of maximum distances between two partitions: decreases as number of common '1'

Spherical Hamming Distance (SHD)

$$d_{shd}(b_i, b_j) = \frac{|b_i \oplus b_j|}{|b_i \wedge b_j|}$$

SHD: Hamming Distance divided by the number of common '1's.

Results

384 dimensional 75 million GIST descriptors

KAIS

Results of Image Retrieval

Collaborated with Adobe

- 11M images
- Use deep neural nets for image representations
- Spend only 35 ms for a single CPU thread

Semantic Hashing: Finding binary codes for BoW model

Document

Binary codes for image retrieval

- Maybe we should extract a real-valued vector that has information about the content?
 - Matching real-valued vectors in a big database is slow and requires a lot of storage.
- Short binary codes are very easy to store and match.

A two-stage method

- First, use semantic hashing with 28-bit binary codes to get a long "shortlist" of promising images.
- Then use 256-bit binary codes to do a serial search for good matches.
 - This only requires a few words of storage per image and the serial search can be done using fast bit-operations.
- But how good are the 256-bit binary codes?
 - Do they find images that we think are similar?

Krizhevsky's deep autoencoder

Start w/ 32 by 32 image patch

Reconstructions of 32x32 color images from 256-bit codes

retrieved using 256 bit codes

dist: 68

dist: 61

dist: 68

dist: 64

dist: 70

dist: 65

dist: 70

dist: 66

dist: 67

dist: 71

retrieved using Euclidean distance in pixel intensity space

dist: 3161.9

dist: 3184.1

dist: 3094.1

dist: 3139.2

dist: 3188.1

dist: 3194.5

dist: 3154.8

dist: 0

dist: 64

dist: 61

dist: 66

retrieved using 256 bit codes

dist: 66

dist: 66

dist: 62

dist: 63

dist: 66

dist: 64

dist: 64

retrieved using Euclidean distance in pixel intensity space

dist: 2916.8

dist: 2922.7

dist: 2899.1

dist: 2942.6

Class Objectives were:

- Understand the basic hashing techniques based on hyperplanes
 - Unsupervised approach
- Semantic hashing
- Codes are available

http://sglab.kaist.ac.kr/software.htm

Homework for Every Class

- Go over the next lecture slides
- Come up with one question on what we have discussed today
 - Write questions three times
- Go over recent papers on image search, and submit their summary before Mon. class

Next Time...

Person Re-Identification, Re-ID

