### Augmented Reality

Sung-eui Yoon

# **Project Guidelines: Project Topics**

- Any topics related to the course theme are okay
  - You can find topics by browsing recent papers



# **Expectations**

### Mid-term project presentation

- Introduce problems and explain why it is important
- Give an overall idea on the related work
- Explain what problems those existing techniques have
- (Optional) explain how you can address those problems
- Explain roles of each member

### • Ack. any external slides/codes, etc.



# **Expectations**

4

### Final-term project presentation

- Review materials that you talked for your mid-term project
- Present your ideas that can address problems of those state-ofthe-art techniques
- Give your qualitatively (or intuitive) reasons how your ideas address them
- Also, explain expected benefits and drawbacks of your approach
- (Optional) backup your claims with quantitative results collected by some implementations
- Explain roles of each members

### • Ack. any external slides/codes, etc.



# A few more comments

- Start to implement a paper, if you don't have any clear ideas
  - While you implement it, you may get ideas about improving it



# **Project evaluation sheet**

| You | name: |
|-----|-------|
| ID: |       |

Score table: higher score is better.

| Speaker | Novelty of the<br>project and idea<br>(1 ~ 5) | Practical benefits<br>of the method<br>(1 ~ 5) | Completeness<br>level of the<br>project<br>(1 ~ 5) | Total<br>score<br>(3 ~ 15) | Role of each<br>student is<br>clear and well<br>balanced?<br>(Yes or No) |
|---------|-----------------------------------------------|------------------------------------------------|----------------------------------------------------|----------------------------|--------------------------------------------------------------------------|
| XXX     |                                               |                                                |                                                    |                            |                                                                          |
| YYY     |                                               |                                                |                                                    |                            |                                                                          |



### Goals for Today

#### Goals

- Getting acquainted with AR
- Making your own Augmented Reality
- Some of recent techniques

### What is Augmented Reality?



Milgram, Paul, et al. "Augmented reality: A class of displays on the reality-virtuality continuum." *Photonics for industrial applications*. International Society for Optics and Photonics, 1995.

Photo Source: http://smartideasblog.trekk.com/augmented-or-virtual-how-do-you-like-your-reality

# Brief History

- 1968 Ivan Sutherland invents first head-mounted display "Sword-of-Damocles" at University of Utah.
- 2010 Vuforia for AR Mobile Apps was released by Qualcomm.
- 2013 Google announces Google Glass.
- 2015 Microsoft announces the HoloLens.
- 2016 Niantic released Pokémon Go.



Original slides are from Frend, Chauncey. "Augmented Reality & the UITS Advanced Visualization Lab."

### AR today – Industry Examples



AR Coloring Book (0:00-0:30)



HoloLens

Live Texturing of Augmented Reality Characters from Colored Drawings IEEE International Symposium on Mixed and Augmented Reality (ISMAR) 2015



Augmented Climbing Wall (0:00-0:33)

#### dedicated workshops on Mar. 24th & 31st

### Building Experiences Assets + Display + Interface

#### Sourcing or Building Data

- 3D Scanning
   3D Scanning
   Photogrammetry
- 3D Authoring Autodesk Maya or Max Sketchup TinkerCAD
- 3D Repositories
   Sketchup 3D Warehouse
   Smithsonian X 3D <u>https://3d.si.edu/browser</u>
   Sketchfab\*
   Thingiverse\*

- You can also augment with media
  - Audio

٠

- 2D media (Image & video)
- Text







### Building Experiences Assets + Display + Interface

#### **Mobile Devices**



#### PC or Mac with Webcam



#### **HoloLens Headset**



### Building Experiences Assets + Display + Interface

**Onboarding AR – Prototyping Tools** No programming required

AURASMA



# wikitude

See more.

### Building Experiences Assets + Display + Interface

**Development Tools** 

Base PackageAR PluginsAR TechnologyImage or Object MarkersImage MarkersImage or Object MarkersImage Or Object MarkersImage MarkersImage or Object MarkersImage MarkersImage Object MarkersImage Object MarkersImage Or Object MarkersImage O

### What the future may hold



Base Package



## **Resources for you!**

Tutorials https://unity3d.com/learn

**AR Plugins** 







Vuforia Basics Tutorial By: Chauncey https://www.youtube.com/watch?v=qbI9PrSUo5w

**AR YouTube Playlist** 

# **Technical Components**

### Robotics parts

- Simultaneous localization and mapping (SLAM)
- Computer vision parts
  - Geometry, light, and materials estimation
- Graphics parts
  - Rendering virtual objects
- Machine learning
  - Understand various things
- AR spans various fields



Modeling Surface Appearance from a Single Photography using Self-Augmentation [Li et al.]

- Assume the anisotropic Ward BRDF model
  - Diffuse albedo and normal map per each pixel
  - Specular parameters for each image





# **Network Architectures**

### Two separate architectures



### Self-augmentation

- Use unlabeled image and reconstruct parameters
- Generate its corresponding image
- Use them as training pairs with labeled ones





### LIME: Live Intrinsic Material Estimation [Meka et al. CVPR 18]

- Estimate specular information of an object in the RGB image
  - Starts with the rendering equation, but ends up with assuming the Phone illumination: diffuse and specular terms

$$\mathbf{BP}(\mathbf{x}, \mathbf{n}, \boldsymbol{\omega}_{i}, \boldsymbol{\omega}_{o}) = \underbrace{\mathbf{m}_{d}(\boldsymbol{\omega}_{i} \cdot \mathbf{n})}_{\text{diffuse}} + \underbrace{\mathbf{m}_{s}(\mathbf{h} \cdot \mathbf{n})^{s}}_{\text{specular}}.$$
(3)
$$\mathbf{EVE MONOCULAR MATERIAL ESTIMATION}$$

$$\mathbf{Material}$$

$$\mathbf{Material}$$

$$\mathbf{Material}$$





### Real-Time Geometry, Albedo, and Motion Reconstruction Using a Single RGB-D Camera

Kaiwen Guo<sup>1</sup>, Feng Xu<sup>1</sup>, Tao Yu<sup>1,2</sup>, Xiaoyang Liu<sup>1</sup>, Qionghai Dai<sup>1</sup>, Yebin Liu<sup>1</sup>





# **Offline Volumetric Performance Capture**



[Starck and Hilton, 2007], [Liu et al., 2009]

[Vlasic et al. 2009], [Debevec, Light Stage], [Collet et al. 2015]



# **Real-time Volumetric Performance Capture**



[Fusion4D, Dou et al. 2016], [Holoportation, Orts-Escolano et al. 2016]



## **Real-time Single-view Volumetric Capture**





# Key Idea: Joint Optimization considering Shading





## **Overview**





### Learning to Predict Indoor Illumination from a Single Image

Marc-André Gardner, Kalyan Sunkavalli, Ersin Yumer, Xiaohui Shen, Emiliano Gambaretto, Christian Gagné, Jean-François Lalonde

Université Laval, Québec, Canada Adobe Systems Inc., San Jose, USA



### Illumination is key





#### **Current approaches and limitations**

#### **Calibration objects**

#### Specialized hardware

#### Scene knowledge







[Debevec, 1998]

[Tocci, 2011], [Manakov, 2013]

[Rematas, 2015]

#### Our approach

#### No calibration

#### Any camera

#### No prior knowledge







# Given a single indoor LDR image, recover a whole HDR environment map



#### End-to-end learning approach



# Near-Eye Light Field Display [ToG 13]



#### Use a microlens array for supporting the light field



**Goals for Today were:** 

- Getting acquainted with AR
- Making your own Augmented Reality
- Some of recent techniques

